American University of Beirut
Faculty of Engineering and Architecture
Department of Electrical and Computer Engineering
EE 042 - Analog Electronics
Instructor: A. Kayssi
Quiz 1
Saturday November 29, 1997
Closed Book
Programmable Calculators Are Not Allowed.

Time: 1.5 hours

VERSION A

Name: \qquad ID\#: \qquad

Provide your answer on the computer card only.
\square Return the computer card attached to the question sheet.
\square Use a pencil for marking your answers and ID number on the computer card.
\square When using an eraser, make sure you erased well.
On this sheet, write with a pen your name followed by your ID number.
\square All questions are graded equally.

1. What is the version of your question sheet? (This question is not graded.)
a) Version A
b) Version B
c) Version C
d) Version D
e) Version E
2. Find the resistance r_{o} for the MOSFET shown in Figure 1. The MOSFET parameters are K $=0.25 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{t}}=1.1 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{A}}=1 / \lambda=60 \mathrm{~V}$. Neglect λ in the DC analysis.
a. $261.7 \mathrm{~K} \Omega$
b. $250.8 \mathrm{~K} \Omega$
c. $273.6 \mathrm{~K} \Omega$
d. $286.5 \mathrm{~K} \Omega$
e. none of the above
3. Calculate the voltage gain, $\mathrm{v}_{\mathrm{o}} / \mathrm{v}_{\mathrm{s}}$ in the circuit of Figure 1. The MOSFET parameters are $\mathrm{K}=0.25 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{t}}=1.1 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{A}}=1 / \lambda=60 \mathrm{~V}$. Neglect λ in the DC analysis.
a. -6.45
b. -6.71
c. -6.84
d. -6.58
e. none of the above
4. For the differential amplifier shown in Figure 2, calculate the output voltage v_{o} when $\mathrm{v}_{1}=26 \sin (\omega \mathrm{t}) \mathrm{mV}$ and $\mathrm{v}_{2}=24 \sin (\omega \mathrm{t}) \mathrm{mV}$. The differential gain is 100 and the CMRR is 60
dB.
a. $202.5 \sin (\omega t) \mathrm{mV}$
b. $207.9 \sin (\omega \mathrm{t}) \mathrm{mV}$
c. $225 \sin (\omega \mathrm{t}) \mathrm{mV}$
d. $279.1 \sin (\omega t) \mathrm{mV}$
e. none of the above
5. For the differential amplifier shown in Figure 3, calculate the collector current of transistor Q_{1}. Assume $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV}$ and $\mathrm{R}_{\mathrm{E}}=10 \mathrm{~K} \Omega$. Neglect the DC base current in your calculations.
a. $75.8 \mu \mathrm{~A}$
b. $37.9 \mu \mathrm{~A}$
c. $22.8 \mu \mathrm{~A}$
d. $113.8 \mu \mathrm{~A}$
e. none of the above
6. In the circuit of Figure 3, calculate the CMRR. Assume $V_{B E}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{T}}=25 \mathrm{mV}$, and R_{E} $=10 \mathrm{~K} \Omega$. Neglect the DC base current in your calculations. The BJTs have $\beta=85$ and $\mathrm{V}_{\mathrm{A}}=$ 70 V.
a. 93.3 dB
b. 89.6 dB
c. 94.3 dB
d. 91.2 dB
e. none of the above
7. For the circuit shown in Figure 4, find the voltage gain v_{0} / v_{s}. Assume $V_{B E}=0.7 \mathrm{~V}$, $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}, \beta=100, \mathrm{~V}_{\mathrm{A}}=100 \mathrm{~V}$, and $\mathrm{R}_{\mathrm{S}}=1 \mathrm{~K} \Omega$. Negelct the DC base current in your calculations.
a. 0.922
b. 0.826
c. 0.963
d. 0.876
e. none of the above
8. Find r_{0} for the three transistors shown in Figure 5. Transistor Q_{1} parameters are: $=5 \mathrm{~mA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{t}}=-2 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=1 / \lambda=50 \mathrm{~V}$. Transistor Q_{2} parameters are $\beta=150$ and $\quad \mathrm{V}_{\mathrm{A}}=$ 80 V . Transistor Q_{3} parameters are $\beta=80$ and $\mathrm{V}_{\mathrm{A}}=60 \mathrm{~V}$. Assume $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{T}}=25$ mV . Neglect λ in the DC analysis of the MOSFET. Also, neglect the DC base currents of the BJTs. Assume $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$.
a. $\mathrm{r}_{\mathrm{o} 1}=10 \mathrm{~K} \Omega ; \mathrm{r}_{\mathrm{o} 2}=100 \mathrm{~K} \Omega ; \mathrm{r}_{\mathrm{o} 3}=44.81 \mathrm{~K} \Omega$
b. $\mathrm{r}_{\mathrm{o} 1}=10 \mathrm{~K} \Omega ; \mathrm{r}_{\mathrm{o} 2}=49.23 \mathrm{~K} \Omega ; \mathrm{r}_{\mathrm{o} 3}=25.28 \mathrm{~K} \Omega$
c. $\mathrm{r}_{\mathrm{o} 1}=10 \mathrm{~K} \Omega ; \mathrm{r}_{\mathrm{o} 2}=65.98 \mathrm{~K} \Omega ; \mathrm{r}_{\mathrm{o} 3}=32.33 \mathrm{~K} \Omega$
d. $\mathrm{r}_{\mathrm{o} 1}=10 \mathrm{~K} \Omega ; \mathrm{r}_{\mathrm{o} 2}=39.26 \mathrm{~K} \Omega ; \mathrm{r}_{\mathrm{o} 3}=20.76 \mathrm{~K} \Omega$
e. none of the above
9. Refer to the given of Problem 8. Find the gain of the last stage $\left(v_{0} / v_{3}\right)$.
a. 0.926
b. 0.945
c. 0.964
d. 0.957
e. none of the above
10. Refer to the given of Problem 8. Find the gain of the middle stage $\left(v_{3} / v_{2}\right)$ taking into consideration the loading effect of stage 3 on stage 2 .
a. -214
b. -263.5
c. -109.8
d. -162.8
e. none of the above
11. Refer to the given of Problem 8. Find the overall gain v_{o} / v_{s}.
a. 919.7
b. 1086.6
c. 727.8
d. 507.2
e. none of the above
12. What is the input resistance of the circuit in Figure 5?
a. 200Ω
b. $9.9 \mathrm{~K} \Omega$
c. $10 \mathrm{~K} \Omega$
d. $1010 \mathrm{~K} \Omega$
e. none of the above
13. Find the range of values of I_{o} in the circuit of Figure 6 when β varies between 30 and 300 . Assume that $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and $\mathrm{R}=100 \mathrm{~K} \Omega$.
a. 25 to $25.7 \mu \mathrm{~A}$
b. 30 to $30.9 \mu \mathrm{~A}$
c. 37.5 to $38.6 \mu \mathrm{~A}$
d. 45 to $46.3 \mu \mathrm{~A}$
e. none of the above

