American University of Beirut

Department of Electrical and Computer Engineering EECE 311 – Electronic Circuits Spring 2008 Midterm – April 11, 2008 Open Book – 90 minutes

NAME:_____ ID Number: _____

Problem 1 [60 points]

Mark the answers for questions 1 to 15 below on the Scantron (computer) sheet.

Consider the circuit shown in Figure 1. Assume $V_{DD} = 2.5$ V. The MOSFET parameters are $k' = 200 \ \mu A/V^2$, $V_t = 0.5$ V, $(W/L)_1 = 20 \ \mu m / 0.25 \ \mu m$, and $(W/L)_2 = 10 \ \mu m / 0.25 \ \mu m$. Assume that the DC drain current of a MOSFET in SAT is given by $I_D \simeq \frac{1}{2} k' \left(\frac{W}{L}\right) V_{OV}^2$.

1. [4 points] Find the resistance R (in K Ω) in the circuit if the current I_{REF} is 100 μ A.

a) 6.02 b) 18.88 c) 12.42 d) 9.21 e) 7.29

2. [4 points] Find the drain current of M_2 , I_{OUT} (in μ A).

a) 75 b) 100 c) 125 d) 150 e) 50

3. [4 points] Find the largest resistance (in K Ω) that can be connected between the drain of M_2 and V_{DD} to maintain saturation region operation for M_2 .

a) 15.38 b) 23.42 c) 47.76 d) 31.51 e) 18.59

4. [4 points] Find the variation in I_{OUT} (in μA) when V_{OUT} increases from 1.5 to 2.5 V. At $L = 0.25 \mu m$, V_A is 10 V.

a) 5 b) 7.5 c) 10 d) 12.5 e) 15

5. [4 points] Repeat question 4, assuming that $(W/L)_2$ is changed from $10\mu m / 0.25\mu m$ to $40\mu m / 1\mu m$.

a) 3.75 b) 1.25 c) 1.88 d) 2.50 e) 3.13

6. [4 points] A P-channel MOSFET M_3 with $k' = 100 \,\mu\text{A/V}^2$, and $V_t = -0.6 \,\text{V}$ is connected with MOSFET M_1 of question 1, as shown in Figure 2. Find $(W/L)_3$ if the current I_{REF} is 200 μA and $R = 4.5 \,\text{K}\Omega$.

Consider the differential amplifier shown in Figure 3. The reference current is $I_{\text{REF}} = 240 \ \mu\text{A}$. Assume $V_{\text{DD}} = 2.5 \text{ V}$. The MOSFET parameters are as follows. For NMOS: For PMOS:

 $k'_{n} = 200 \ \mu A/V^{2}, \ V_{tn} = 0.5 \ V$ $(W/L)_{1} = 20 \ \mu m \ / \ 0.25 \ \mu m$ $(W/L)_{2} = 10 \ \mu m \ / \ 0.25 \ \mu m$ $(W/L)_{4} = 10 \ \mu m \ / \ 0.25 \ \mu m$ $(W/L)_{5} = 10 \ \mu m \ / \ 0.25 \ \mu m$

For PMOS: $k'_{p} = 100 \ \mu A/V^{2}, V_{tp} = -0.6 \ V$ $(W/L)_{3} = 40 \ \mu m / 0.25 \ \mu m$ $(W/L)_{6} = 10 \ \mu m / 0.25 \ \mu m$ $(W/L)_{7} = 10 \ \mu m / 0.25 \ \mu m$

Figure 3

7. [4 points] Find the DC voltage (in mV) at node *X* when the two inputs are at 0.9 V.

a) 258.6 b) 250.0 c) 277.5 d) 267.7 e) 288.2

8. [4 points] Find the total power dissipation (in mW) in the circuit.

a) 0.90 b) 1.05 c) 1.20 d) 1.35 e) 0.75

Assume in the following that $V_{AN} = 10$ V, and $|V_{AP}| = 8$ V.

9. [4 points] Find the small-signal differential gain $v_{out}/(v_{in1} - v_{in2})$.

a) -79.5 b) -72.6 c) -67.2 d) -62.9 e) -59.3

10. [4 points] Find the small-signal differential gain $v_{out}/(v_{in1} - v_{in2})$ when a 1000 K Ω resistor is connected across the v_{out} terminals.

a) -53.9 b) -56.6 c) -67.5 d) -63.2 e) -59.6

11. [4 points] Find the small-signal common-mode gain when the output is taken *single-endedly* (at the drain of M_4 or M_5). In this case, $v_1 = v_2 = v_{icm}$.

a) -2.8 b) -0.008 c) -0.08 d) -0.8 e) -1.8

12. [4 points] Find the small-signal common-mode gain when the output is taken differentially. In this case, $v_1 = v_2 = v_{icm}$.

a) 0 b) 0.08 c) -0.08 d) -0.008 e) 0.008

Assume in the following two questions that when the input is common-mode, the DC voltage at the drains of M_4 and M_5 is 1.5 V.

13. [4 points] Find the maximum common-mode input voltage (in V) that maintains saturation-region operation for all MOSFETs in the circuit.

a) 2.4 b) 2.0 c) 2.1 d) 2.2 e) 2.3

14. [4 points] Find the minimum common-mode input voltage (in V) that maintains saturation-region operation for all MOSFETs in the circuit.

a) 0.86 b) 0.80 c) 0.82 d) 0.84 e) 0.77

15. [4 points] The two inputs are $v_{in1}(t) = 4.5 \sin(\omega t)$ mV and $v_{in2}(t) = 4.9 \sin(\omega t)$ mV. If the differential gain is 62 dB, and the CMRR is 50 dB, find the amplitude of the output voltage (in V).

a) 0.52 b) 0.33 c) 0.37 d) 0.41 e) 0.47

Problem 2 [40 points]

Solve this problem on the answer booklet.

The common-emitter amplifier shown in Figure 4 is biased using $I_{\text{REF}} = 140 \ \mu\text{A}$, and has $V_{\text{An}} = 10 \ \text{V}$, $|V_{\text{Ap}}| = 5 \ \text{V}$, and large β . Q_2 and Q_3 are matched. In DC analysis, assume that the collector current in ACTIVE is given by $I_C \simeq I_S e^{\frac{V_{BE}}{V_T}}$, where $V_{\text{T}} = 25 \ \text{mV}$.

a) [5 points] Find the output resistance of the amplifier. Assume all transistors are an *internal part* of the amplifier.

The output resistance is $r_{o(Q1)} // r_{o(Q2)}$ Since Q₂ and Q₃ are matched, and β is very large: $I_{C1} = I_{C2} = I_{REF} = 140 \ \mu\text{A}$. $r_{o(Q1)} = V_{AN} / I_{C1} = 10/0.14 = 71.43 \ \text{K}\Omega$ $r_{o(Q2)} = |V_{AP}| / I_{C1} = 5/0.14 = 35.71 \ \text{K}\Omega$ Rout = $r_{o(Q1)} // r_{o(Q2)} = 71.43 // 35.71 = 23.81 \ \text{K}\Omega$

b) [5 points] Find the open-circuit voltage gain v_0/v_i .

The open circuit voltage gain v_0/v_1 is $-g_{m1} R_{out}$ $g_{m1} = I_{C1}/V_T = 0.14/25 = 5.6 \text{ mA/V}$ $v_0/v_1 = -g_{m1} R_{out} = -5.6 \times 23.81 = -133.34 \text{ V/V}$

Assume in the following that a signal source is connected to the input of the amplifier. It is a voltage source v_{sig} with a source resistance $R_{sig} = 25 \text{ K}\Omega$. Assume also that a 10 K Ω load resistor is connected from the output to ground. The signal source and the load do not affect the DC bias.

c) [4 points] Find the input resistance v_i/i_i of the amplifier if $\beta = 200$.

The input resistance v_i/i_i is $r_{\pi} = V_T/I_B = \beta V_T/I_C = 200 \times 25/0.14 = 35.71 \text{ K}\Omega$

d) [4 points] Find the voltage gain v_0/v_{sig} .

The voltage gain is $-g_{m1} R'_L \times$ (voltage divider ratio at input).

 $R'_L = R_{out} // R_L = 23.81 // 10 = 7.04 \text{ K}\Omega$ The voltage divider ratio at the input is $r_{\pi} / (r_{\pi} + R_{sig}) = 35.71 / (35.71+25) = 0.5882$

The voltage gain $v_0/v_{sig} = -5.6 \times 7.04 \times 0.5882 = -23.19 \text{ V/V}$

Assume now that for Q_1 , $C_{\pi} = 25$ fF, $C_{\mu} = 10$ fF, and that a load capacitance $C_L = 40$ fF is connected from the output to ground. Neglect all other capacitances.

e) [5 points] Using Miller's theorem, and assuming that the input circuit determines the upper 3-dB frequency $f_{\rm H}$, find the value of $f_{\rm H}$.

The Miller constant *K* is $v_c/v_b = -g_{m1} R'_L = -5.6 \times 7.04 = -39.42$ We apply Miller's theorem to obtain the input capacitance: The input capacitance is $C_{in} = C_{\pi} + (1 - K)C_{\mu} = 25 + (1+39.42) \times 10 = 429.2$ fF The resistance seen by this input capacitance is $r_{\pi} //R_{sig} = 35.71 //25 = 14.71$ KΩ The 3-dB frequency due to the input circuit is $f_H = 1/(2\pi C_{in} (r_{\pi} //R_{sig})) = 1/(2\pi \times 429.2 \text{ f} \times 14.71 \text{ K}) = 25.21$ MHz

f) [5 points] Based on the results of (d) and (e), show and *label* the Bode plot for the magnitude of the voltage gain (v_o/v_{sig}) .

The low-frequency gain is -23.19 V/V, which corresponds to 27.3 dB The 3-dB frequency is 25.21 MHz

R(seen by C_{π}) = $r_{\pi} //R_{sig}$ = 14.71 KΩ R(seen by C_{L}) = R'_{L} = 7.04 KΩ R(seen by C_{μ}) = $(r_{\pi} //R_{sig}) + R'_{L} + g_{m1} R'_{L} (r_{\pi} //R_{sig})$ = 14.71 + 7.04 + 5.6 × 14.71 × 7.04 = 601.7 KΩ

frequently-used resistance calc.

 $f_{\rm H} = 1/(2\pi (25f \times 14.71\text{K} + 40f \times 7.04\text{K} + 10f \times 601.7\text{K})) = 23.87 \text{ MHz}$