## American University of Beirut

Department of Electrical and Computer Engineering
EECE 311 - Electronics II
Fall 2005-2006 (Section 2)
Quiz 1 - Solution

## Problem 1:


a) $I=1 / 2 k_{n}^{\prime}(W / L)\left(V_{G S}-V_{t n}\right)^{2}$
$\Rightarrow 40 \mathrm{u}=0.5(0.2 \mathrm{~m})(5)\left(\mathrm{V}_{\mathrm{I}}-0.5\right)^{2}$
$\Rightarrow \mathrm{V}_{\mathrm{I}}=0.5+\operatorname{sqrt}(40 \mathrm{u} / 0.5 \mathrm{~m})=0.783 \mathrm{~V}$
b) $v_{\mathrm{O}}=v_{\mathrm{DS}}=>v_{\mathrm{V}_{\mathrm{min}}}=\mathrm{v}_{\mathrm{DS} \text { min }}=\mathrm{v}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{tn}}$

Assuming $\mathrm{v}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{GS}}(\mathrm{DC}$ value $) \Rightarrow \mathrm{v}_{\mathrm{Omin}}=0.783-0.5=0.283 \mathrm{~V}$
c) $\mathrm{g}_{\mathrm{m}}=\mathrm{I}_{\mathrm{D}} /\left(\mathrm{V}_{\mathrm{OV}} / 2\right)=40 \mathrm{u} /(0.283 / 2)=0.283 \mathrm{~mA} / \mathrm{V}$
$\mathrm{r}_{\mathrm{o}}=\mathrm{V}_{\mathrm{A}} / \mathrm{I}_{\mathrm{D}}=(1 / 0.1) / 40 \mathrm{u}=250 \mathrm{~K}$
gain $=v_{o} / v_{i}=-g_{m}\left(r_{o} / / R_{0}\right.$ of current source $)=-0.283(100 / / 250)=-20.2 \mathrm{~V} / \mathrm{V}$

d) $I_{D}(\mathrm{Q} 2)=1 / 2 \mathrm{k}_{\mathrm{p}}(\mathrm{W} / \mathrm{L})\left(\mathrm{V}_{\mathrm{OV} 2}\right)^{2}$

This current is equal to 40 u
$\Rightarrow 40 \mathrm{u}=0.5(0.08 \mathrm{~m})(\mathrm{W} / \mathrm{L})(0.2)^{2} \Rightarrow(\mathrm{~W} / \mathrm{L})=25$ for $\mathrm{Q}_{2}$
$(W / L)=25$ for $Q_{3}$, since $Q_{2}$ and $Q_{3}$ are matched.
e) $V_{S G}=\left|V_{\text {tp }}\right|+\left|V_{\text {OV2 }}\right|=0.54+0.2=0.74 \mathrm{~V}$
f) Output resistance is $\mathrm{r}_{\mathrm{o} 2}=\mathrm{V}_{\mathrm{AP}} / \mathrm{I}_{\mathrm{D} 2}=(1 / 0.12) / 40 \mathrm{u}=208.33 \mathrm{~K}$
g) For Q2: $\left|\mathrm{V}_{\mathrm{DS}}\right| \geq\left|\mathrm{V}_{\mathrm{GS}}\right|-\left|\mathrm{V}_{\mathrm{tp}}\right|=>\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{O}} \geq 0.2 \mathrm{~V} \Rightarrow>\mathrm{V}_{\mathrm{Omax}}=\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$

## Problem 2:

In this problem, there is an implicit assumption that the signal source (not shown) has a large source resistance, and that the source does not affect the DC bias.

a) DC analysis: current in 300 K resistor $=\mathrm{I}_{\mathrm{B}}$

KCL at collector: $0.5 \mathrm{~mA}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}+\mathrm{V}_{\mathrm{O}} / 10 \mathrm{~K}$
But $\mathrm{V}_{\mathrm{O}}=300 \mathrm{~K} \times \mathrm{I}_{\mathrm{B}}+\mathrm{V}_{\mathrm{BE}}=300 \mathrm{~K} \times \mathrm{I}_{\mathrm{B}}+0.7 \mathrm{~V}$
$\Rightarrow 0.5 \mathrm{~mA}=\mathrm{I}_{\mathrm{B}}+\beta \mathrm{I}_{\mathrm{B}}+\left(300 \mathrm{~K} \times \mathrm{I}_{\mathrm{B}}+0.7 \mathrm{~V}\right) / 10 \mathrm{~K}$
$\Rightarrow 0.5 \mathrm{~mA}-0.07 \mathrm{~mA}=91 \mathrm{I}_{\mathrm{B}}=>\mathrm{I}_{\mathrm{B}}=4.725 \mathrm{uA}$
$\mathrm{I}_{\mathrm{C}}=60 \mathrm{I}_{\mathrm{B}}=0.2835 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{O}}=300 \mathrm{~K} \times 4.725 \mathrm{uA}+0.7 \mathrm{~V}=2.118 \mathrm{~V}$
b) The Miller constant is the gain from base to collector without $R_{B}$, and is given by $-g_{m} R^{\prime}{ }_{L}$ with $R^{\prime}{ }_{L}=r_{o}(B J T) / / R_{0}$ (current source) // $R_{L}$
$\mathrm{r}_{\mathrm{o}}(\mathrm{BJT})=\mathrm{V}_{\mathrm{A}} / \mathrm{I}_{\mathrm{C}}=80 / 0.2835 \mathrm{~m}=282.2 \mathrm{~K}$
$\mathrm{R}^{\prime}{ }_{\mathrm{L}}=282.2 \mathrm{~K} / / 100 \mathrm{~K} / / 10 \mathrm{~K}=8.807 \mathrm{~K}$
$\mathrm{g}_{\mathrm{m}}=\mathrm{I}_{\mathrm{C}} / \mathrm{V}_{\mathrm{T}}=0.2835 \mathrm{~m} / 25 \mathrm{~m}=11.34 \mathrm{~mA} / \mathrm{V}$
Miller's $\mathrm{K}=-\mathrm{g}_{\mathrm{m}} \mathrm{R}^{\prime}{ }_{\mathrm{L}}=-11.34 \times 8.807=-99.87$
Equivalent resistance from base to ground due to $\mathrm{R}_{\mathrm{B}}: \mathrm{R}_{1}=\mathrm{R}_{\mathrm{B}} /(1-\mathrm{K})=$ $300 \mathrm{~K} /(1+99.87)=2.974 \mathrm{~K}$
The input resistance is $\mathrm{R}_{\text {in }}=\mathrm{r}_{\pi} / / \mathrm{R}_{1}$ $\mathrm{r}_{\pi}=\mathrm{V}_{\mathrm{T}} / \mathrm{I}_{\mathrm{B}}=25 \mathrm{~m} / 4.725 \mathrm{u}=5.291 \mathrm{~K}$
$\mathrm{R}_{\text {in }}=5.291 / / 2.974=1.904 \mathrm{~K}$
c) The resistance seen by $\mathrm{C}_{\pi}$ is $\mathrm{R}_{\text {in }}$ (we can use the approximation from part (b)) $=$ 1.904 K . The more accurate estimate is obtained as follows:
$\mathrm{i}_{\mathrm{RB}}=\left(\mathrm{v}_{\mathrm{i}}-\mathrm{v}_{\mathrm{o}}\right) / \mathrm{R}_{\mathrm{B}}=(1-$ gain $) \mathrm{v}_{\mathrm{i}} / \mathrm{R}_{\mathrm{B}}=>\mathrm{v}_{\mathrm{i}} / \mathrm{i}_{\mathrm{RB}}=\mathrm{R}_{\mathrm{B}} /(1-$ gain $)=300 \mathrm{~K} /(1+97)=3.061$ K [note: the value of the voltage gain is found in part (d)]
Resistance seen by $\mathrm{C}_{\pi}$ is equal to: $\mathrm{r}_{\pi} / /\left(\mathrm{v}_{\mathrm{i}} / \mathrm{i}_{\mathrm{RB}}\right)=5.291 \mathrm{~K} / / 3.061 \mathrm{~K}=1.939 \mathrm{~K}$


The resistance seen by $\mathrm{C}_{\mathrm{L}}$ is equal to:
$\mathrm{R}^{\prime}{ }_{\mathrm{L}} / /$ (resistance due to controlled source) // $\left(\mathrm{R}_{\mathrm{B}}+\mathrm{r}_{\pi}\right)$ :
$v_{\pi}=v_{i}=v_{x} r_{\pi} /\left(r_{\pi}+R_{B}\right)=v_{x} \times 5.291 /(5.291+300)=v_{x} / 57.7$
The controlled current source is therefore equivalent to a resistance equal to $57.7 / \mathrm{g}_{\mathrm{m}}=$ 5.088 K

The resistance seen by $\mathrm{C}_{\mathrm{L}}$ is therefore: $8.807 / / 5.088 / / 305.29=3.191 \mathrm{~K}$
The resistance seen by $\mathrm{C}_{\mu}$ is equal to: $\mathrm{R}_{\mathrm{B}} / /\left(\mathrm{R}^{\prime}{ }_{\mathrm{L}}+\mathrm{r}_{\pi}+\mathrm{g}_{\mathrm{m}} \times \mathrm{r}_{\pi} \times \mathrm{R}^{\prime}{ }_{\mathrm{L}}\right)=300 \mathrm{~K} / /(8.807$ $\mathrm{K}+5.291 \mathrm{~K}+11.34 \times 8.807 \times 5.291 \mathrm{~K})=193.2 \mathrm{~K}$.
$\tau_{\mathrm{H}}=1.939 \mathrm{~K} \times 1 \mathrm{pF}+3.191 \mathrm{~K} \times 20 \mathrm{pF}+193.2 \mathrm{~K} \times 1 \mathrm{pF}=258.96 \mathrm{nsec}$
$\mathrm{f}_{\mathrm{H}}=1 /\left(2 \pi \tau_{\mathrm{H}}\right)=614.6 \mathrm{KHz}$
d) The low-frequency voltage gain is determined without using Miller's theorem. The current in $R_{B}$ is $\left(v_{i}-v_{o}\right) / R_{B}$. This current is equal to $g_{m} v_{i}+v_{o} / R^{\prime}{ }_{L}$. Therefore:
$\left(1 / R_{B}-g_{m}\right) v_{i}=v_{o}\left(1 / R^{\prime}{ }_{L}+1 / R_{B}\right) \Rightarrow$ The voltage gain is
$v_{0} / v_{\mathrm{i}}=\left(1 / R_{B}-\mathrm{g}_{\mathrm{m}}\right) /\left(1 / \mathrm{R}^{\prime}{ }_{\mathrm{L}}+1 / \mathrm{R}_{\mathrm{B}}\right)=\left(1-\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{B}}\right) /\left(\mathrm{R}_{\mathrm{B}} / \mathrm{R}^{\prime}{ }_{\mathrm{L}}+1\right)$
$=(1-11.34 \times 300) /(300 / 8.807+1)=-97 \mathrm{~V} / \mathrm{V}$ or 39.74 dB
e) Asymptotic Bode Plot


## Problem 3


a) $\mathrm{I}_{\text {REF }}=\left(2-\mathrm{V}_{\mathrm{GS} 1}\right) / 10 \mathrm{~K}=1 / 2 \mathrm{k}_{\mathrm{n}}(\mathrm{W} / \mathrm{L})\left(\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{tn}}\right)^{2}=(0.5)(0.2 \mathrm{~m})(10)\left(\mathrm{V}_{\mathrm{GS} 1}-0.4\right)^{2}$. Solving the quadratic equation we get: $\mathrm{V}_{\mathrm{GS}}=0.753 \mathrm{~V}$ (the other root is negative). $\mathrm{I}_{\text {REF }}$ is therefore $(2-0.753) / 10 \mathrm{~K}=0.1247 \mathrm{~mA}$
b) $\mathrm{V}_{\mathrm{GS} 2}=\mathrm{V}_{\mathrm{GS} 1}-\mathrm{I}_{\mathrm{O}} \times \mathrm{R}_{2}$ and $\mathrm{I}_{\mathrm{O}}=1 / 2 \mathrm{k}_{\mathrm{n}}^{\prime}(\mathrm{W} / \mathrm{L})\left(\mathrm{V}_{\mathrm{GS} 2}-\mathrm{V}_{\mathrm{tn}}\right)^{2}=1 / 2 \mathrm{k}_{\mathrm{n}}^{\prime}(\mathrm{W} / \mathrm{L})\left(\mathrm{V}_{\mathrm{GS} 1}-\mathrm{I}_{\mathrm{O}} \times \mathrm{R}_{2}-\mathrm{V}_{\mathrm{tn}}\right)^{2}$
Therefore $\mathrm{I}_{\mathrm{O}}=(0.5)(0.2 \mathrm{~m})(10)\left(0.753-\mathrm{I}_{\mathrm{O}} \times 10 \mathrm{~K}-0.4\right)^{2}$
$\Rightarrow \mathrm{I}_{\mathrm{O}}=20.86 \mathrm{uA}$
The value of $\mathrm{V}_{\mathrm{GS} 2}$ is $0.753-20.86 \mathrm{u} \times 10 \mathrm{~K}=0.5444 \mathrm{~V}$
c) The minimum output voltage corresponds to $\mathrm{V}_{\mathrm{DS} 2}=\mathrm{V}_{\mathrm{GS} 2}-\mathrm{V}_{\mathrm{tn}}=>\mathrm{V}_{\mathrm{O}}-\mathrm{I}_{\mathrm{O}} \mathrm{R}_{2}=$ $\mathrm{V}_{\mathrm{GS} 2}-\mathrm{V}_{\mathrm{tn}}=>\mathrm{V}_{\text {Omin }}=20.86 \mathrm{u} \times 10 \mathrm{~K}+0.5444-0.4=0.353 \mathrm{~V}$
d) The output resistance is given by $r_{02}+R_{2}+g_{m 2} r_{02} R_{2}$ $\mathrm{r}_{\mathrm{o} 2}=\mathrm{V}_{\mathrm{A}} / \mathrm{I}_{\mathrm{O}}=(1 / 0.08) / 20.86 \mathrm{u}=599.23 \mathrm{~K}$ $\mathrm{g}_{\mathrm{m} 2}=\mathrm{I}_{\mathrm{o}} /\left(\mathrm{V}_{\mathrm{ov}} / 2\right)=20.86 \mathrm{u} /((0.5444-0.4) / 2)=0.289 \mathrm{~mA} / \mathrm{V}$
$\mathrm{R}_{\mathrm{O}}$ is therefore equal to: $10 \mathrm{~K}+599.23 \mathrm{~K}+599.23 \mathrm{~K} \times 0.289 \mathrm{~m} \times 10 \mathrm{~K}=2340.5 \mathrm{~K}$

## Problem 4

In this problem, there is an implicit assumption that the signal source (not shown) has a large source resistance.

a) Using Miller's theorem, the time constant at the input of the circuit is given by
$\tau_{H}=r_{\pi}\left(C_{\pi}+C_{\mu}\left(1+g_{m} r_{o}\right)\right)$ since the only "load" is the output resistance of the BJT itself.
$\tau_{\mathrm{H}}=\mathrm{r}_{\pi}\left(\mathrm{C}_{\pi}+\mathrm{C}_{\mu}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}\right)\right)=\mathrm{r}_{\pi} \mathrm{C}_{\pi}+\mathrm{r}_{\pi} \mathrm{C}_{\mu}+\mathrm{r}_{\pi} \mathrm{C}_{\mu} \mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}=\mathrm{r}_{\pi} \mathrm{C}_{\pi}+\mathrm{r}_{\pi} \mathrm{C}_{\mu}+\beta \mathrm{r}_{0} \mathrm{C}_{\mu}$
The third term is much larger than the first two, and therefore $\tau_{\mathrm{H}}$ is approximately $\beta \mathrm{r}_{0} \mathrm{C}_{\mu}$.
$\mathrm{f}_{\mathrm{H}}=1 /\left(2 \pi \tau_{\mathrm{H}}\right)=1 /\left(2 \pi \beta r_{o} \mathrm{C}_{\mu}\right)$
b) The current source output resistance is approximately $r_{0}$. The output resistance of the amplifier becomes $R_{0} \approx r_{0} / / r_{o}=r_{0} / 2$. The open-circuit voltage gain becomes $-g_{m}$ $\mathrm{r}_{0} / 2=-\mathrm{A}_{0} / 2$. The $3-\mathrm{dB}$ frequency becomes $1 /\left(2 \pi \tau_{\mathrm{H}}\right)=1 /\left(2 \pi \beta\left(\mathrm{r}_{0} / 2\right) \mathrm{C}_{\mu}\right)=2 \mathrm{f}_{\mathrm{H}}$
c) The current source output resistance is approximately $\beta r_{0}$. The output resistance of the amplifier becomes $R_{0} \approx \beta r_{0} / / r_{0} \approx r_{0}$. The open-circuit voltage gain becomes $-g_{m} r_{0}$ $=-\mathrm{A}_{0}$. The 3-dB frequency becomes $1 /\left(2 \pi \tau_{\mathrm{H}}\right)=1 /\left(2 \pi \beta \mathrm{r}_{\mathrm{o}} \mathrm{C}_{\mu}\right)=\mathrm{f}_{\mathrm{H}}$
d) For an unloaded cascode amplifier, the output resistance of the unloaded amplifier is given by $\beta r_{0}$. The output resistance of the amplifier becomes $R_{0} \approx \beta r_{0} / / r_{0} \approx r_{0}$. The open-circuit voltage gain becomes (see Fig. 6.41 in textbook) $-\beta A_{0} r_{0} /\left(r_{0}+\beta r_{0}\right) \approx-A_{0}$. The 3 - dB frequency becomes $1 /\left(2 \pi \tau_{\mathrm{H}}\right) \approx 1 /\left(2 \pi \mathrm{r}_{\mathrm{o}} \mathrm{C}_{\mu}\right)=\beta \mathrm{f}_{\mathrm{H}} \quad$ (see Fig. 6.42 in textbook)
e) The output resistance of the amplifier becomes $R_{0} \approx \beta r_{0} / \beta r_{o}=\beta r_{0} / 2$. The opencircuit voltage gain becomes $-\beta \mathrm{A}_{0} \beta \mathrm{r}_{0} /\left(\beta \mathrm{r}_{0}+\beta \mathrm{r}_{\mathrm{o}}\right)=-\beta \mathrm{A}_{0} / 2$. The $3-\mathrm{dB}$ frequency becomes $1 /\left(2 \pi \tau_{\mathrm{H}}\right) \approx 1 /\left(2 \pi\left(\beta r_{0} / 2\right) \mathrm{C}_{\mu}\right)=2 \mathrm{f}_{\mathrm{H}}$

## Problem 5



For the difference amplifier, the output voltage is given by:
$v_{o}=\frac{-R_{2}}{R_{1}} v_{i 1}+\frac{R_{4}}{R_{3}+R_{4}}\left(1+\frac{R_{2}}{R_{1}}\right) v_{i 2}$
$\Rightarrow v_{o}=-4.7 v_{i 1}+4.674 v_{i 2}=\mathrm{A}_{\mathrm{v} 1} v_{i 1}+\mathrm{A}_{\mathrm{v} 2} v_{i 2}=\mathrm{A}_{\mathrm{d}}\left(v_{i 1}-v_{i 2}\right)+\mathrm{A}_{\mathrm{cm}}\left(v_{i 1}+v_{i 2}\right) / 2$
$\Rightarrow \mathrm{A}_{\mathrm{d}}=\left(\mathrm{A}_{\mathrm{v} 1}-\mathrm{A}_{\mathrm{v} 2}\right) / 2=-4.687 \mathrm{~V} / \mathrm{V}$
and $\mathrm{A}_{\mathrm{cm}}=\mathrm{A}_{\mathrm{v} 1}+\mathrm{A}_{\mathrm{v} 2}=-0.026 \mathrm{~V} / \mathrm{V}$
$\Rightarrow$ CMRR $=20 \log |4.687 / 0.026|=45.12 \mathrm{~dB}$

