American University of Beirut

Department of Electrical and Computer Engineering
EECE 311 - Electronics II
Fall 2005-2006 (Section 2)
Quiz 2 - December 22, 2005
Closed Book - 90 minutes
NAME: \qquad ID Number: \qquad

I have neither given nor received aid on this exam
SIGNATURE
Problem 1 [40 points]

-2.5V

Figure 1
Refer to the MOSFET amplifier shown in Figure 1.
a) [5 points] How many stages are there? For each stage, identify the type of the stage, the amplifier transistor(s) and the load transistor(s).

Assume in the following that $k_{\mathrm{n}}^{\prime}=250 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{\mathrm{tn}}=0.5 \mathrm{~V}, \lambda_{\mathrm{n}}=0.05 \mathrm{~V}^{-1}, k_{\mathrm{p}}^{\prime}=100$ $\mu \mathrm{A} / \mathrm{V}^{2}, V_{\mathrm{tp}}=-0.6 \mathrm{~V}$, and $\lambda_{\mathrm{p}}=0.1 \mathrm{~V}^{-1}$.

Assume $\mathrm{I}_{\text {REF }}=100 \mu \mathrm{~A}$, and that all MOSFETs have a (W / L) ratio equal to 20, except for of Q_{5} which has $(W / L)=40$.

Neglect channel length modulation in DC analyses.

b) [6 points] For each MOSFET, find the drain current and the overdrive voltage when $V_{1}=V_{2}=0$. This condition $\left(V_{1}=V_{2}=0\right)$ results in $V_{\text {OUT }}=0$. Show your results in the following format:

Transistor	Drain Current $(\mu \mathrm{A})$	Overdrive Voltage (V)
Q1		
Q2		
:		

c) [4 points] Find the total power dissipation in the circuit.
d) [7 points] Find the differential gain $A_{d}=v_{\text {out }} /\left(v_{1}-v_{2}\right)$ by calculating $v_{\mathrm{d} 2} /\left(v_{1}-v_{2}\right)$, $v_{\mathrm{d} 5} / V_{\mathrm{d} 2}$, and $v_{\mathrm{out}} / v_{\mathrm{d} 5}$.
e) [6 points] Find the common-mode gain $A_{\mathrm{cm}}=v_{\text {out }} / v_{\mathrm{icm}}$ when $v_{1}=v_{2}=v_{\mathrm{icm}}$. What is the common-mode rejection ratio of the amplifier (in dB)?
f) [5 points] Find the input common-mode range by calculating the maximum and minimum values of $V_{1}=V_{2}=V_{\text {ICM }}$ for which all MOSFETs are saturated.
g) [2 points] Find minimum output voltage $V_{\text {Out }}$ for which all MOSFETs remain saturated. What transistor determines this limit?
h) [2 points] Find the maximum output voltage $V_{\text {OuT }}$ for which all MOSFETs remain saturated. What transistor determines this limit?
i) [3 points] A capacitor C_{C} is connected from the output node to the drain of Q_{2}. Neglecting all other capacitances in the circuit, find the frequency of the resulting zero and pole.

Problem 2 [10 points]

For a BJT differential amplifier, the value of β for the transistors varies between 100 and 140 , around a mean value of 120 . The transistors are biased using a $100 \mu \mathrm{~A}$ current source.
a) [4 points] Find the input bias and the input offset currents.
b) [2 points] The circuit uses collector resistors, each equal to $10 \mathrm{~K} \Omega$, and emitter resistors, each equal to 150Ω. Show the circuit diagram.
c) [4 points] Find the range of values for the differential input resistance.

Problem 3 [20 points]

Figure 2

Refer to the circuit shown in Figure 2. The load resistor is $R_{\mathrm{L}}=500 \Omega$. The MOSFETs have $k_{\mathrm{n}}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{\mathrm{tn}}=0.5 \mathrm{~V}$.
a) [3 points] What type of output stage is this circuit?
b) [10 points] Calculate the values of $R_{\text {REF }}$ and the (W / L) ratios for the MOSFETs so that the output ranges from -1.0 to 1.0 volts with the highest efficiency and smallest area. All MOSFETs should be in saturation over the range of operation. Assume that Q_{2} and Q_{3} are matched.
c) [7 points] Calculate the sine wave efficiency (power_into_load / total_power) for a sine wave output with an amplitude of 1 V . The total_power should include the power dissipated in all circuit elements.

Problem 4 [30 points]

Figure 3

Consider the op-amp circuit shown in Figure 3.
a) [3 points] Determine the type of feedback used.
b) [10 points] The op-amp is modeled by a differential input resistance $R_{\mathrm{id}}=100 \mathrm{~K} \Omega$, an open-circuit voltage gain of 5000 , and an output resistance of $1 \mathrm{~K} \Omega$. Using feedback techniques, find the open-loop gain A. What are the units of A ?
c) [4 points] Find the feedback factor β. What are the units of β ?
d) [3 points] Find the closed-loop gain A_{f}.
e) [5 points] Using feedback techniques, find the input resistance $R_{\text {in }}$.
f) [5 points] Using feedback techniques, find the output resistance $R_{\text {out }}$.

