American University of Beirut

Department of Electrical and Computer Engineering EECE 311 – Electronics II Fall 2005 – 2006 (Section 2) Quiz 2 – December 22, 2005 Closed Book – 90 minutes

NAME:_____ ID Number: ___

I have neither given nor received aid on this exam

SIGNATURE

Problem 1 [40 points]

Figure 1

Refer to the MOSFET amplifier shown in Figure 1.

a) **[5 points]** How many stages are there? For each stage, identify the type of the stage, the amplifier transistor(s) and the load transistor(s).

Assume in the following that $k'_n = 250 \ \mu A/V^2$, $V_{tn} = 0.5 \ V$, $\lambda_n = 0.05 \ V^{-1}$, $k'_p = 100 \ \mu A/V^2$, $V_{tp} = -0.6 \ V$, and $\lambda_p = 0.1 \ V^{-1}$.

Assume $I_{REF} = 100 \ \mu\text{A}$, and that all MOSFETs have a (*W/L*) ratio equal to 20, except for of Q_5 which has (*W/L*) = 40.

Neglect channel length modulation in DC analyses.

b) [6 points] For each MOSFET, find the drain current and the overdrive voltage when $V_1 = V_2 = 0$. This condition ($V_1 = V_2 = 0$) results in $V_{OUT} = 0$. Show your results in the following format:

Transistor	Drain Current (µA)	Overdrive Voltage (V)
Q1		
Q2		
:		

c) [4 points] Find the total power dissipation in the circuit.

d) **[7 points]** Find the differential gain $A_d = v_{out}/(v_1 - v_2)$ by calculating $v_{d2}/(v_1 - v_2)$, v_{d5}/v_{d2} , and v_{out}/v_{d5} .

e) [6 points] Find the common-mode gain $A_{cm} = v_{out}/v_{icm}$ when $v_1 = v_2 = v_{icm}$. What is the common-mode rejection ratio of the amplifier (in dB)?

f) [5 points] Find the input common-mode range by calculating the maximum and minimum values of $V_1 = V_2 = V_{\text{ICM}}$ for which all MOSFETs are saturated.

g) [2 points] Find minimum output voltage V_{OUT} for which *all* MOSFETs remain saturated. What transistor determines this limit?

h) [2 points] Find the maximum output voltage V_{OUT} for which *all* MOSFETs remain saturated. What transistor determines this limit?

i) [3 points] A capacitor $C_{\rm C}$ is connected from the output node to the drain of Q_2 . Neglecting all other capacitances in the circuit, find the frequency of the resulting zero and pole.

Problem 2 [10 points]

For a BJT differential amplifier, the value of β for the transistors varies between 100 and 140, around a mean value of 120. The transistors are biased using a 100 μ A current source.

a) [4 points] Find the input bias and the input offset currents.

b) [2 points] The circuit uses collector resistors, each equal to $10K\Omega$, and emitter resistors, each equal to 150Ω . Show the circuit diagram.

c) [4 points] Find the range of values for the differential input resistance.

Problem 3 [20 points]

Figure 2

Refer to the circuit shown in Figure 2. The load resistor is $R_{\rm L} = 500 \ \Omega$. The MOSFETs have $k'_{\rm n} = 200 \ \mu \text{A/V}^2$ and $V_{\rm tn} = 0.5 \ \text{V}$.

a) [3 points] What type of output stage is this circuit?

b) [10 points] Calculate the values of R_{REF} and the (*W/L*) ratios for the MOSFETs so that the output ranges from -1.0 to 1.0 volts with the highest efficiency and smallest area. All MOSFETs should be in saturation over the range of operation. Assume that Q_2 and Q_3 are matched.

c) [7 points] Calculate the sine wave efficiency (power_into_load / total_power) for a sine wave output with an amplitude of 1 V. The total_power should include the power dissipated *in all circuit elements*.

Problem 4 [30 points]

Figure 3

Consider the op-amp circuit shown in Figure 3.

a) [3 points] Determine the type of feedback used.

b) [10 points] The op-amp is modeled by a differential input resistance $R_{id} = 100 \text{ K}\Omega$, an open-circuit voltage gain of 5000, and an output resistance of 1 K Ω . Using feedback techniques, find the open-loop gain *A*. What are the units of *A*?

- c) [4 points] Find the feedback factor β . What are the units of β ?
- d) [3 points] Find the closed-loop gain $A_{\rm f}$.
- e) [5 points] Using feedback techniques, find the input resistance R_{in} .
- f) [5 points] Using feedback techniques, find the output resistance R_{out} .