American University of Beirut

Department of Electrical and Computer Engineering
EECE 311 - Electronics II
Fall 2005-2006 (Section 2)
Quiz 2 - December 22, 2005
Closed Book - 90 minutes

NAME: \qquad ID Number: \qquad

I have neither given nor received aid on this exam

SIGNATURE
Problem 1 [40 points]

Figure 1
Refer to the MOSFET amplifier shown in Figure 1.
a) [5 points] How many stages are there? For each stage, identify the type of the stage, the amplifier transistor(s) and the load transistor(s).

There are three stages.
The first stage is a differential stage with an active load. The amplifier transistors are Q_{1} and Q_{2}, and the load transistors are Q_{3} and Q_{4}.
The second stage is a common-source amplifier. The amplifier transistor is Q_{5} and the load transistor is Q_{7}.

The third stage is a common-drain (or source follower) stage. The amplifier transistor is Q_{6} and the load transistor is Q_{8}. Transistors Q_{9} and Q_{10} form a current mirror.

Assume in the following that $k_{\mathrm{n}}^{\prime}=250 \mu \mathrm{~A} / \mathrm{V}^{2}, V_{\mathrm{tn}}=0.5 \mathrm{~V}, \lambda_{\mathrm{n}}=0.05 \mathrm{~V}^{-1}, k_{\mathrm{p}}^{\prime}=100$ $\mu \mathrm{A} / \mathrm{V}^{2}, V_{\mathrm{tp}}=-0.6 \mathrm{~V}$, and $\lambda_{\mathrm{p}}=0.1 \mathrm{~V}^{-1}$.

Assume $I_{\text {REF }}=100 \mu \mathrm{~A}$, and that all MOSFETs have a (W / L) ratio equal to 20 , except for of Q_{5} which has $(W / L)=40$.

Neglect channel length modulation in DC analyses.

b) [6 points] For each MOSFET, find the drain current and the overdrive voltage V_{OV} when $V_{1}=V_{2}=0$. This condition $\left(V_{1}=V_{2}=0\right)$ results in $V_{\text {OUT }}=0$. Show your results in the following format:

Transistor	Drain Current $(\mu \mathrm{A})$	Overdrive Voltage (V)
Q1		
Q2		
$:$		

Since Q_{9} and Q_{10} are matched, this means that $\mathrm{I}_{\mathrm{D} 9}=\mathrm{I}_{\mathrm{D} 10}=100 \mathrm{uA}$. The current splits equally in Q_{1} and Q_{2} since they are matched and have the same V_{GS} (and channel length modulation is being neglected). Therefore $\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}=50 \mathrm{uA} . \mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 3}$ and $\mathrm{I}_{\mathrm{D} 2}=$ $\mathrm{I}_{\mathrm{D} 4}=>\mathrm{I}_{\mathrm{D} 3}=\mathrm{I}_{\mathrm{D} 4}=50 \mathrm{uA}$. The current in Q_{7} is 100 uA , since it is mirroring $\mathrm{I}_{\text {REF. }}$. This same current flows in $\mathrm{Q}_{5}=>\mathrm{I}_{\mathrm{D} 5}=\mathrm{I}_{\mathrm{D} 7}=100 \mathrm{uA}$. Same for Q_{6} and Q_{8} : $\mathrm{I}_{\mathrm{D} 6}=\mathrm{I}_{\mathrm{D} 8}=100$ uA.
Vov for the various MOSFETs is calculated from
$I_{D}=\frac{1}{2} k^{\prime}\left(\frac{W}{L}\right) V_{O V}^{2} \Rightarrow V_{O V}=\sqrt{\frac{2 I_{D}}{k^{\prime}\left(\frac{W}{L}\right)}}$ where k^{\prime} is k_{n} for NMOS and k_{p} for PMOS. For
PMOS transistors, V_{OV} is negative. The table shown below also shows the value of V_{GS} of the transistors, and the values of g_{m} and r_{o}.

	$\mathrm{k}^{\prime}(\mathrm{uA} / \mathrm{V} 2)$	W / L	$\mathrm{VT}(\mathrm{V})$	Lambda $(1 / \mathrm{V})$	$\mathrm{ID}(\mathrm{uA})$	$\mathrm{VOV}(\mathrm{V})$	$\mathrm{VGS}(\mathrm{V})$	gm $(\mathrm{mA} / \mathrm{V})$	ro (kOhm)
Q1	250	20	0.5	0.05	50	0.1414	0.6414	0.7071	400
Q2	250	20	0.5	0.05	50	0.1414	0.6414	0.7071	400
Q3	100	20	-0.6	0.1	50	-0.2236	-0.8236	0.4472	200
Q4	100	20	-0.6	0.1	50	-0.2236	-0.8236	0.4472	200
Q5	100	40	-0.6	0.1	100	-0.2236	-0.8236	0.8944	100
Q6	250	20	0.5	0.05	100	0.2	0.7	1	200
Q7	250	20	0.5	0.05	100	0.2	0.7	1	200
Q8	250	20	0.5	0.05	100	0.2	0.7	1	200
Q9	250	20	0.5	0.05	100	0.2	0.7	1	200
Q10	250	20	0.5	0.05	100	0.2	0.7	1	200

c) [4 points] Find the total power dissipation in the circuit.

The total power dissipated in the circuit comes from the two supplies.

The current in the $(+2.5 \mathrm{~V})$ supply is equal to $\mathrm{I}_{\mathrm{D} 3}+\mathrm{I}_{\mathrm{D} 4}+\mathrm{I}_{\mathrm{D} 5}+\mathrm{I}_{\mathrm{D} 6}=50+50+100+$ $100=300 \mathrm{uA}$.
The current in the $(-2.5 \mathrm{~V})$ supply is $\mathrm{I}_{\mathrm{D} 9}+\mathrm{I}_{\mathrm{D} 10}+\mathrm{I}_{\mathrm{D} 7}+\mathrm{I}_{\mathrm{D} 8}=100+100+100+100=$ 400 uA , into the supply.
The total power dissipation is therefore $(2.5)(0.3 \mathrm{~m})+(2.5)(0.4 \mathrm{~m})=1.75 \mathrm{~mW}$.
d) [7 points] Find the differential gain $A_{d}=v_{\text {out }} /\left(v_{1}-v_{2}\right)$ by calculating $v_{\mathrm{d} 2} /\left(v_{1}-v_{2}\right)$, $v_{\mathrm{d} 5} / v_{\mathrm{d} 2}$, and $v_{\text {out }} / v_{\mathrm{d} 5}$.

The first stage gain is given by $v_{\text {out }} /\left(v_{1}-v_{2}\right)=\mathrm{g}_{\mathrm{m} 2}\left(\mathrm{r}_{\mathrm{o} 2} / / \mathrm{r}_{\mathrm{o} 4}\right)=0.7071(200 / / 400)=94.28$ V/V.
The second stage gain is given by $v_{\mathrm{d} 5} / v_{\mathrm{d} 2}=-\mathrm{g}_{\mathrm{m} 5}\left(\mathrm{r}_{\mathrm{o} 5} / / \mathrm{r}_{\mathrm{o} 7}\right)=0.8944(100 / / 200)=-59.63$ V/V.
The third stage gain is given by $v_{\text {out }} / v_{\mathrm{d} 5}=\left(\mathrm{g}_{\mathrm{m} 6} \mathrm{R}^{\prime}{ }_{\mathrm{L}}\right) /\left(1+\mathrm{g}_{\mathrm{m} 6} \mathrm{R}^{\prime}{ }_{\mathrm{L}}\right)$ with $\mathrm{R}^{\prime}{ }_{\mathrm{L}}=\left(\mathrm{r}_{06} / / \mathrm{r}_{08}\right)=$ 100 K . Therefore $v_{\text {out }} / v_{\mathrm{d} 5}=100 / 101=0.99 \mathrm{~V} / \mathrm{V}$.
The overall gain is $94.28 \times(-59.63) \times(0.99)=-5565.7 \mathrm{~V} / \mathrm{V}$
e) [6 points] Find the common-mode gain $A_{\mathrm{cm}}=v_{\text {out }} / v_{\mathrm{icm}}$ when $v_{1}=v_{2}=v_{\mathrm{icm}}$. What is the common-mode rejection ratio of the amplifier (in dB)?

Since $\mathrm{r}_{03}=\mathrm{r}_{04}$ and $\mathrm{g}_{\mathrm{m} 3} \mathrm{r}_{03} \gg 1$, the first stage common-mode gain is given by $-1 /\left(2 g_{m 3} \mathrm{r}_{010}\right)=-1 /(2 \times 0.4472 \times 200)=-0.00559 \mathrm{~V} / \mathrm{V}$
The second and third stages have the same gain as in part (d).
The common-mode gain is therefore $(-0.00559) \times(-59.63) \times 0.99=0.33 \mathrm{~V} / \mathrm{V}$
The CMRR is $20 \log (5566 / 0.33)=84.54 \mathrm{~dB}$
f) [4 points] Find the input common-mode range by calculating the maximum and minimum values of $V_{1}=V_{2}=V_{\text {ICM }}$ for which all MOSFETs are saturated.

The maximum $\mathrm{V}_{\text {ICM }}$ is determined by Q_{1} leaving SAT $=>\mathrm{V}_{\mathrm{DS} 1}=\mathrm{V}_{\mathrm{OV} 1}$ or $\mathrm{V}_{\mathrm{GD} 1}=\mathrm{V}_{\text {tn }}$ $=>\mathrm{V}_{\text {ICMmax }}-\mathrm{V}_{\mathrm{G} 3}=\mathrm{V}_{\mathrm{tn}}=>\mathrm{V}_{\text {ICMmax }}=\mathrm{V}_{\mathrm{GS} 3}+2.5+\mathrm{V}_{\mathrm{tn}}=-0.8236+2.5+0.5=$ 2.1764 V

The minimum $\mathrm{V}_{\mathrm{ICM}}$ is determined by Q_{10} leaving $\mathrm{SAT}=>\mathrm{V}_{\mathrm{DS} 10}=\mathrm{V}_{\mathrm{OV} 10}=>$
$\mathrm{V}_{\mathrm{S} 1}-(-2.5)=\mathrm{V}_{\mathrm{OV} 10}=>\mathrm{V}_{\mathrm{ICMmin}}-\mathrm{V}_{\mathrm{GS} 1}+2.5=0.2=>\mathrm{V}_{\mathrm{ICMmin}}=0.6414-2.5+0.2=$ $-1.659 \mathrm{~V}$
g) [2 points] Find the minimum output voltage $V_{\text {OUT }}$ for which all MOSFETs remain saturated. What transistor determines this limit?

The minimum output voltage corresponds to the condition \boldsymbol{Q}_{8} at edge of SAT $=>\mathrm{V}_{\text {DS8 }}$ $=\mathrm{V}_{\text {OV8 }}=>\mathrm{V}_{\text {OUTmin }}-(-2.5)=0.2=>\mathrm{V}_{\text {OUTmin }}=-2.3 \mathrm{~V}$.
h) [2 points] Find the maximum output voltage $V_{\text {Out }}$ for which all MOSFETs remain saturated. What transistor determines this limit?

The maximum output voltage corresponds to the condition \boldsymbol{Q}_{5} at edge of SAT since Q_{5} enters the linear region before Q_{6} does as $\mathrm{V}_{\text {OUT }}$ increases $=>\left|\mathrm{V}_{\mathrm{DS} 5}\right|=\left|\mathrm{V}_{\mathrm{OV} 5}\right|=>$ $2.5-\left(\mathrm{V}_{\text {OUTmax }}+\mathrm{V}_{\mathrm{GS} 6}\right)=0.2236=>\mathrm{V}_{\text {OUTmax }}=2.5-0.7-0.2236=1.576 \mathrm{~V}$
i) [4 points] A capacitor C_{C} is connected from the output node to the drain of Q_{2}. Neglecting all other capacitances in the circuit, find the frequency of the resulting zero and pole.

The zero is at $\mathrm{G}_{\mathrm{m} 2} / \mathrm{C}_{\mathrm{C}}$ where $\mathrm{G}_{\mathrm{m} 2}$ is the transconductance of the combined stage 2 stage 3 amplifier. The pole is at a $1 /\left(\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{G}_{\mathrm{m} 2} \mathrm{C}_{\mathrm{C}}\right)$ where R_{1} is the output resistance of stage 1 , and R_{2} is the output resistance of stage 3.
R_{1} is therefore $\mathrm{r}_{02} / / \mathrm{r}_{04}=133.3 \mathrm{~K} \Omega$
R_{2} is therefore $\left(1 / \mathrm{g}_{\mathrm{m} 6}\right) / / \mathrm{r}_{06} / / \mathrm{r}_{08}=1 / / 200 / / 200=0.99 \mathrm{~K} \Omega$
$\mathrm{G}_{\mathrm{m} 2}$ is $\mathrm{g}_{\mathrm{m} 5}\left(\mathrm{r}_{05} / / \mathrm{r}_{07}\right) \mathrm{g}_{\mathrm{m} 6}=0.8944(100 / / 200) 1=59.63 \mathrm{~mA} / \mathrm{V}$
The zero is therefore at $59.63 /\left(2 \pi \mathrm{C}_{\mathrm{C}}\right)=9.49 / \mathrm{C}_{\mathrm{C}} \mathrm{GHz}$ with C_{C} in pF .
The pole is therefore at $1000 /\left(133.30 .9959 .632 \pi\right.$ Cc) $=0.0202 / \mathrm{C}_{\mathrm{C}} \mathrm{MHz}$ with C_{C} in pF.

Problem 2 [10 points]

For a BJT differential amplifier, the value of β for the transistors varies between 100 and 140 , around a mean value of 120 . The transistors are biased using a $100 \mu \mathrm{~A}$ current source.
a) [4 points] Find the input bias and the input offset currents.

The input bias current is $\mathrm{I}_{\mathrm{B}}=(\mathrm{I} / 2) /(\beta+1)$ where I is the source current. I_{B} is therefore $(100 / 2) /(120+1)=0.413 \mu \mathrm{~A}$.
The input offset current is given by $\mathrm{I}_{\mathrm{B}} \Delta \beta / \beta=0.413(40 / 120)=0.138 \mu \mathrm{~A}$.
b) [2 points] The circuit uses collector resistors, each equal to $10 \mathrm{~K} \Omega$, and emitter resistors, each equal to 750Ω. Show the circuit diagram.

See figure 7.15(a) in textbook.
c) [4 points] Find the range of values for the differential input resistance.

The differential input resistance is $\mathrm{R}_{\mathrm{id}}=2(\beta+1)\left(\mathrm{r}_{\mathrm{e}}+\mathrm{R}_{\mathrm{e}}\right)$, where $\mathrm{r}_{\mathrm{e}}=\mathrm{V}_{\mathrm{T}} / \mathrm{I}_{\mathrm{E}}=\mathrm{V}_{\mathrm{T}} /(\mathrm{I} / 2)=$ $25 \mathrm{mV} / 50 \mu \mathrm{~A}=500 \Omega$. At $\beta=100, \mathrm{R}_{\mathrm{id}}=2(101)(500+750)=252.5 \mathrm{~K} \Omega$; at $\beta=140, \mathrm{R}_{\mathrm{id}}$ $=2(141)(500+750)=352.5 \mathrm{~K} \Omega$. The range of values for R_{id} is therefore 252.5 to $352.5 \mathrm{~K} \Omega$.

Problem 3 [20 points]

Figure 2

Refer to the circuit shown in Figure 2. The load resistor is $R_{\mathrm{L}}=1000 \Omega$. The MOSFETs have $k_{n}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $V_{\mathrm{tn}}=0.5 \mathrm{~V}$. The input voltage range is unrestricted.
a) [3 points] What type of output stage is this circuit?

This is a class-A output stage.
b) [10 points] Calculate the values of $R_{\text {REF }}$ and the (W / L) ratios for the MOSFETs so that the output ranges from -0.5 to 0.5 volts with the highest efficiency and smallest area. All MOSFETs should be in saturation over the range of operation. Assume that Q_{2} and Q_{3} are matched.

The current I , flowing in $\mathrm{R}_{\text {REF }}$ and mirrored in Q_{2}, should be equal to $\mid \mathrm{V}_{\text {ouTmin }} / / \mathrm{R}_{\mathrm{L}}=$ $0.5 / 1000=0.5 \mathrm{~mA}$, for maximum efficiency.
Q_{2} is always SAT $=>\mathrm{V}_{\text {Out }}-(-2)>\mathrm{V}_{\mathrm{OV} 2}=>\mathrm{V}_{\mathrm{OV} 2}<\mathrm{V}_{\text {Out }}+2=>\mathrm{V}_{\mathrm{OV} 2}=-0.5+2=$ 1.5 V , for minimum area. Therefore, $\left(\frac{W}{L}\right)_{2}=\frac{I_{D 2}}{\frac{1}{2} k_{n}^{\prime} V_{O V}^{2}}=0.5 \mathrm{~m} /\left(.1 \mathrm{~m} \mathrm{1.5}{ }^{2}\right)$ $=>(\mathrm{W} / \mathrm{L})_{2}=2.22$.
Since Q_{2} and Q_{3} are matched $=>(\mathrm{W} / \mathrm{L})_{3}=2.22$.
Since $\mathrm{V}_{\mathrm{OV} 3}=\mathrm{V}_{\mathrm{OV} 2}=1.5 \mathrm{~V}$, the voltage at the drain of Q_{3} is $\mathrm{V}_{\mathrm{G} 3}=\mathrm{V}_{\mathrm{GS} 3}-2=\mathrm{V}_{\mathrm{OV} 3}+$ $\mathrm{V}_{\mathrm{tn}}-2=1.5+0.5-2=0 \mathrm{~V}$.
The voltage across $R_{\text {REF }}$ is 2 V , therefore $\mathrm{R}_{\mathrm{REF}}=2 \mathrm{~V} / 0.5 \mathrm{~mA}=4 \mathrm{~K} \Omega$.
Q_{1} should be saturated $=>\mathrm{V}_{\mathrm{OV} 1}=\mathrm{V}_{\mathrm{DS} 1 \text { min }}=2-\mathrm{V}_{\text {OUT }}$ max $=2-0.5=1.5 \mathrm{~V}$
When vout $=$ voutmax, $\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{D} 2}=1 \mathrm{~mA} \Rightarrow>\left(\frac{W}{L}\right)_{1}=\frac{I_{D 1}}{\frac{1}{2} k_{n}^{\prime} V_{O V 1}^{2}}=4.44$.
c) [7 points] Calculate the sine wave efficiency (power_into_load / total_power) for a sine wave output with an amplitude of 0.5 V . The total_power should include the power dissipated in all circuit elements.

The power in the load is $P_{L}=\frac{V_{\text {out max }}^{2}}{2 R_{L}}=\frac{0.5^{2}}{2000}=0.125 \mathrm{~mW}$.
The power in the two supplies is $2 \mathrm{~V}(1 \mathrm{~mA})+2 \mathrm{~V}(1 \mathrm{~mA})=4 \mathrm{~mW}$.
The efficiency is therefore: $0.125 / 4=3.125 \%$

Problem 4 [30 points]

Figure 3

Consider the op-amp circuit shown in Figure 3.
a) [3 points] Determine the type of feedback used.

The output is a voltage that is sampled using a shunt. The input is mixed using currents, which is also a shunt. The type of feedback is therefore shunt-shunt.
b) [7 points] The op-amp is modeled by a differential input resistance $R_{\mathrm{id}}=100 \mathrm{~K} \Omega$, an open-circuit voltage gain of 5000 , and an output resistance of $1 \mathrm{~K} \Omega$. Using feedback techniques, find the open-loop gain A. What are the units of A ?

The input is transformed into a current source using Norton's equivalent since the feedback is shunt-shunt.
The feedback circuit is modified (opened) to calculate the open-loop gain $\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{\mathrm{s}}$.
From the circuit, $\mathrm{V}_{\mathrm{id}}=-\mathrm{I}_{\mathrm{S}}\left(\mathrm{R}_{\mathrm{S}} / / 100 \mathrm{~K} / /(1 \mathrm{~K}+10 \mathrm{~K} / / 50 \mathrm{~K})\right)=\mathrm{I}_{\mathrm{S}}(-895.14)$.
The output voltage is $\mathrm{V}_{\mathrm{o}}=5000 \mathrm{~V}_{\mathrm{id}} \mathrm{R}^{\prime} /\left(1 \mathrm{~K}+\mathrm{R}^{\prime}{ }_{\mathrm{L}}\right)$.
R_{L} is given by $5 \mathrm{~K} / /(50 \mathrm{~K}+1 \mathrm{~K} / / 10 \mathrm{~K})=4.553 \mathrm{~K}$.
Therefore $\mathrm{V}_{\mathrm{O}}=4099.45 \mathrm{~V}_{\mathrm{id}}=4099.45 \mathrm{I}_{\mathrm{s}}(-895.14)$.
$\mathrm{A}=\mathrm{V}_{\mathrm{o}} / \mathrm{I}_{\mathrm{S}}=-3669.58 \mathrm{~K} \Omega$.
c) [4 points] Find the feedback factor β. What are the units of β ? What is the loop gain?

The circuit to find β is shown above. The value of β is given by $\mathrm{I}_{\mathrm{f}} / \mathrm{V}_{\mathrm{o}}=(1 \mathrm{~K} / / 10 \mathrm{~K}) /($ $1 \mathrm{~K} / / 10 \mathrm{~K}+50 \mathrm{~K})(-1 / 1 \mathrm{~K})=-17.857 \mu \mathrm{~A} / \mathrm{V}$
The loop gain is $\mathrm{A} \beta=(-3669.58 \mathrm{~K} \Omega)(-17.857 \mu \mathrm{~A} / \mathrm{V})=65.53$
d) [3 points] Find the closed-loop gain A_{f}.
$A_{f}=\frac{A}{1+\beta A}=\frac{-3669.58}{1+65.53}=-55.16 \mathrm{~K} \Omega$
e) [3 points] Find the voltage gain V_{o} / V_{s}.

$$
\frac{V_{o}}{V_{s}}=\frac{V_{o}}{I_{s} R_{s}}=\frac{A_{f}}{R_{s}} . \text { The voltage gain is therefore } \mathrm{V}_{o} / \mathrm{V}_{\mathrm{s}}=-55.16 \mathrm{~V} / \mathrm{V} \text {. }
$$

f) [5 points] Using feedback techniques, find the input resistance $R_{\text {in }}$.
$\mathrm{R}_{\mathrm{i}}=1 \mathrm{~K} / / 100 \mathrm{~K} / /(1 \mathrm{~K}+50 \mathrm{~K} / / 10 \mathrm{~K})=895.14 \Omega$
$\mathrm{R}_{\text {if }}=\mathrm{R}_{\mathrm{i}} /(1+\beta \mathrm{A})=895.14 / 66.53=13.45 \Omega$
$\mathrm{R}_{\text {in }}=1 /\left(1 / \mathrm{R}_{\text {if }}-1 / \mathrm{R}_{\mathrm{S}}\right)=13.64 \Omega$
g) [5 points] Using feedback techniques, find the output resistance $R_{\text {out }}$.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{o}}=5 \mathrm{~K} / / 1 \mathrm{~K} / /(50 \mathrm{~K}+1 \mathrm{~K} / / 10 \mathrm{~K})=819.91 \Omega \\
& \mathrm{R}_{\text {of }}=\mathrm{R}_{0} /(1+\beta \mathrm{A})=819.91 / 66.53=12.324 \Omega \\
& \mathrm{R}_{\text {out }}=1 /\left(1 / \mathrm{R}_{\text {of }}-1 / \mathrm{R}_{\mathrm{L}}\right)=12.35 \Omega
\end{aligned}
$$

