CMPS 211

Assignment 3 - Solution

Section 3.2

2- a) $f(x)=17 x+11$; yes $C=1, k=11$
c) $f(x)=x \log x$; yes $C=1 k=1$
d) $f(x)=x^{4}=2 ; n o$
e) $f(x)=2^{x}$; no

8- \quad b) $f(x)=3 x^{5}+(\log x)^{4}$
$3 x^{5} \leq 3 x^{5} \quad$ for $x>1$
$\log x<x \quad$ for $x>1$
$\Rightarrow 3 x^{5}+(\log x)^{4}<3 x^{5}+(x)^{4}=3 x^{5}+x^{4}<3 x^{5}+x^{5}=4 x^{5}$
$\Rightarrow f(x)=\mathrm{O}\left(x^{5}\right)$ for $c=4$ and $x>1$
c) $f(x)=\frac{x^{4}+x^{2}+1}{x^{4}+1}$

$$
\begin{aligned}
& x^{4}+x^{2}+1 \leq x^{4}+x^{4}+x^{4}=3 x^{4} \\
& x^{4}+1 \geq x^{-4} \quad \text { for } x>1 \quad \text { for } x>1 \\
& \Rightarrow \\
& \Rightarrow \frac{x^{4}+x^{2}+1}{x^{4}+1} \leq \frac{3 x^{4}}{x^{4}}=3 \\
& \Rightarrow f(x)=\mathrm{O}\left(x^{0}\right)=\mathrm{O}(1) \text { for } c=3 \text { and } x>1
\end{aligned}
$$

14- a) Is $x^{3}=\mathrm{O}\left(x^{2}\right)$?
NO
Want to show that there doesn't exist a pair of c and k to satisfy the equation $x^{3} \leq c x^{2} \quad$ and $x>k$
Since x is positive, we can divide both sides of the inequality by x, then $x^{2} \leq c x \quad$ and $x>k$
but there are no values of c and k to satisfy this inequality, if we set $k=1$.
$\Rightarrow x^{3} \neq \mathrm{O}\left(x^{2}\right)$.
d) Is $x^{3}=\mathrm{O}\left(x^{2}+x^{4}\right)$?

YES

for $x>1$
$\Rightarrow x^{3} \leq x^{4}+x^{2} \quad$ for $x>1 \quad$ since $x^{2}>0$
$\Rightarrow x^{3} \leq x^{4}+x^{4}=2 x^{4} \quad$ for $x>1 \quad$ since $x^{2} \leq x^{4}$
$\Rightarrow x^{3}=\mathrm{O}\left(x^{2}+x^{4}\right) \quad$ for $c=2$ and $x>1$

$$
\begin{array}{ll}
\text { f) Is } x^{3}=\mathrm{O}\left(x^{3} / 2\right) ? & \\
x^{3} \leq x^{3}=2\left(x^{3} / 2\right) & \text { for } x>1 \\
\Rightarrow x^{3} \leq 2\left(x^{3} / 2\right) & \text { for } x>1 \\
\Rightarrow x^{3}=\mathrm{O}\left(x^{3} / 2\right) & \text { for } c=2 \text { and } x>1
\end{array}
$$

18- Show that $1^{k}+2^{k}+\ldots+n^{k}=\mathrm{O}\left(n^{k+1}\right)$

$$
\begin{array}{ll}
1^{k} \leq n^{k} & \text { for } n \geq 1 \\
2^{k} \leq n^{k} & \text { for } n \geq 1 \\
\vdots & \\
\\
n^{k} \leq n^{k} & \\
\Rightarrow 1^{k}+2^{k}+\ldots+n^{k} \leq n^{k}+n^{k}+\ldots+n^{k} & (n \text { times }) \\
\Rightarrow 1^{k}+2^{k}+\ldots+n^{k} \leq n\left(n^{k}\right)=n^{k+1} & \\
\Rightarrow 1^{k}+2^{k}+\ldots+n^{k}=\mathrm{O}\left(n^{k+1}\right) & \text { for } c=1, n \geq 1 \text { and } k>0
\end{array}
$$

24- a) Show $3 x+7=\Theta(x)$.

$$
\begin{array}{lllll}
\text { 1. } & 3 x+7 \leq 4 x \text { since } 7 \leq x \text { for } x>7 & \Rightarrow & 3 x+7=\mathrm{O}(x) & \text { for } x>7 \\
2 . & x \leq 3 x+7 \text { since } x \text { is positive } & \Rightarrow & x=\mathrm{O}(3 x+7) & \text { for } x>0 \\
\therefore & 3 x+7=\Theta(x) & \text { for } x>7 . & &
\end{array}
$$

c) Show $\lfloor x+1 / 2\rfloor=\Theta(x)$.

$$
\begin{aligned}
& \text { 1. }\lfloor x+1 / 2\rfloor \leq x+1 \Rightarrow\lfloor x+1 / 2\rfloor=\mathrm{O}(x) \\
& \text { 2. } \quad x-1 \leq\lfloor x+1 / 2\rfloor \text { since } x-1 \leq\lfloor x+1 / 2\rfloor \leq x+1 \Rightarrow x=\mathrm{O}(\lfloor x+1 / 2\rfloor) \text { for } x>1 \\
& \therefore\lfloor x+1 / 2\rfloor=\Theta(x)
\end{aligned}
$$

e) Show $\log _{10} x=\Theta\left(\log _{2} x\right)$.

1. $\log _{10} x=\frac{\log x}{\log 10}=\mathrm{O}(\log x) \quad$ for $x>1$
2. $\log _{2} x=\frac{\log x}{\log 2}=\mathrm{O}(\log x) \quad$ for $x>1$
$\therefore \log _{10} x=\Theta\left(\log _{2} x\right) \quad$ for $x>1$.

Section 3.3

4- To find $x^{2^{k}}$ by successive squaring requires $k+1$ multiplications.
To find $x^{2^{k}}$ by multiplying x by itself requires 2^{k} multiplications.
The first approach is naturally more efficient.

8- a) Evaluating $3 x^{2}+x+1$ at $x=2$:
Input: $c=2, a_{0}=1, a_{1}=1, a_{2}=3$.
0. $y=3$ initialization of y

1. $i=1, y=3 \cdot 2+1=7 \quad$ first iteration in for loop
2. $i=2, y=7 \cdot 2+1=15 \quad$ second iteration in for loop

Final Answer: $y=15$
b) In each iteration of the for loop, one multiplication and one addition are used, so the total number of multiplications and additions in the algorithm is n multiplications and n additions.

12- a) To find the maximum of a sequence of n integers: always requires $n-1$ comparisons; traverse list from 2 to n, comparing at each iteration
b) To locate an element in a list of n terms with linear search:

Least number of comparisons is 1 ; occurs if the element to be located is the first element in the list
c) To locate an element in a list of n terms with binary search:

Least number of comparisons is 1 ; occurs if the element to be located is the first element inspected, i.e. the middle element in the list

16- The search algorithm resembles binary search, except that it divides the list of numbers into 4 sublists. Since binary search has worst-case time complexity of $\mathrm{O}(\log n)$ where $\log n=\log _{2} n$, then this search algorithm will worst-case time complexity of $\mathrm{O}\left(\log _{4} n\right)=\mathrm{O}(\log n)$. This is caused by the fact that the list is continuously subdivided into 4 equal-sized sublists.

