CMPS 211 Assignment 3 - Solution

Section 3.2

2 - a) f(x) = 17x + 11; yes C = 1, k = 11 c) $f(x) = x \log x$; yes C = 1 k = 1 d) $f(x) = x^4 = 2$; no e) $f(x) = 2^x$; no

8- b)
$$f(x) = 3x^5 + (\log x)^4$$

 $3x^5 \le 3x^5$ for $x > 1$
 $\log x < x$ for $x > 1$
 $\Rightarrow 3x^5 + (\log x)^4 < 3x^5 + (x)^4 = 3x^5 + x^4 < 3x^5 + x^5 = 4x^5$
 $\Rightarrow f(x) = O(x^5)$ for $c = 4$ and $x > 1$

c)
$$f(x) = \frac{x^4 + x^2 + 1}{x^4 + 1}$$

 $x^4 + x^2 + 1 \le x^4 + x^4 + x^4 = 3 x^4$ for $x > 1$
 $x^4 + 1 \ge x^{-4}$ for $x > 1 \implies \frac{1}{x^4 + 1} \le x^4$ for $x > 1$
 $\Rightarrow \frac{x^4 + x^2 + 1}{x^4 + 1} \le \frac{3x^4}{x^4} = 3$
 $\Rightarrow f(x) = O(x^0) = O(1)$ for $c = 3$ and $x > 1$

14- a) Is $x^3 = O(x^2)$? NO Want to show that there doesn't exist a pair of *c* and *k* to satisfy the equation $x^3 \le c x^2$ and x > kSince *x* is positive, we can divide both sides of the inequality by *x*, then $x^2 \le c x$ and x > kbut there are no values of *c* and *k* to satisfy this inequality, if we set k = 1. $\Rightarrow x^3 \ne O(x^2)$.

> d) Is $x^3 = O(x^2 + x^4)$? $x^3 \le x^4$ for x > 1 $\Rightarrow x^3 \le x^4 + x^2$ for x > 1 since $x^2 > 0$ $\Rightarrow x^3 \le x^4 + x^4 = 2x^4$ for x > 1 since $x^2 \le x^4$ $\Rightarrow x^3 = O(x^2 + x^4)$ for c = 2 and x > 1

f) Is
$$x^{3} = O(x^{3}/2)$$
? YES
 $x^{3} \le x^{3} = 2(x^{3}/2)$ for $x > 1$
 $\Rightarrow x^{3} \le 2(x^{3}/2)$ for $x > 1$
 $\Rightarrow x^{3} = O(x^{3}/2)$ for $c = 2$ and $x > 1$

18- Show that
$$1^{k} + 2^{k} + \dots + n^{k} = O(n^{k+1})$$

 $1^{k} \le n^{k}$ for $n \ge 1$
 $2^{k} \le n^{k}$ for $n \ge 1$
 \vdots
 $\frac{n^{k} \le n^{k}}{1}$ for $n \ge 1$
 $\Rightarrow 1^{k} + 2^{k} + \dots + n^{k} \le n^{k} + n^{k} + \dots + n^{k}$ (*n* times)
 $\Rightarrow 1^{k} + 2^{k} + \dots + n^{k} \le n(n^{k}) = n^{k+1}$
 $\Rightarrow 1^{k} + 2^{k} + \dots + n^{k} = O(n^{k+1})$ for $c = 1, n \ge 1$ and $k > 0$

24- a) Show
$$3x + 7 = \Theta(x)$$
.
1. $3x + 7 \le 4x$ since $7 \le x$ for $x > 7 \implies 3x + 7 = O(x)$ for $x > 7$
2. $x \le 3x + 7$ since x is positive $\Rightarrow x = O(3x + 7)$ for $x > 0$
 $\therefore 3x + 7 = \Theta(x)$ for $x > 7$.

c) Show
$$\lfloor x + 1/2 \rfloor = \Theta(x)$$
.
1. $\lfloor x + 1/2 \rfloor \le x + 1 \implies \lfloor x + 1/2 \rfloor = O(x)$ for $x > 1$
2. $x - 1 \le \lfloor x + 1/2 \rfloor$ since $x - 1 \le \lfloor x + 1/2 \rfloor \le x + 1 \implies x = O(\lfloor x + 1/2 \rfloor)$ for $x > 1$
 $\therefore \lfloor x + 1/2 \rfloor = \Theta(x)$ for $x > 1$.

e) Show
$$log_{10} x = \Theta (log_2 x)$$
.
1. $log_{10} x = \frac{\log x}{\log 10} = O (log x)$ for $x > 1$
2. $log_2 x = \frac{\log x}{\log 2} = O (log x)$ for $x > 1$
 $\therefore log_{10} x = \Theta (log_2 x)$ for $x > 1$.

Section 3.3

4- To find x^{2^k} by successive squaring requires k+1 multiplications. To find x^{2^k} by multiplying x by itself requires 2^k multiplications.

The first approach is naturally more efficient.

- 8- a) Evaluating $3x^2 + x + 1$ at x = 2: Input: c = 2, $a_0 = 1$, $a_1 = 1$, $a_2 = 3$. 0. y = 3 initialization of y1. i = 1, $y = 3 \cdot 2 + 1 = 7$ first iteration in *for* loop 2. i = 2, $y = 7 \cdot 2 + 1 = 15$ second iteration in *for* loop Final Answer: y = 15
 - b) In each iteration of the *for* loop, one multiplication and one addition are used, so the total number of multiplications and additions in the algorithm is *n* multiplications and *n* additions.
- a) To find the maximum of a sequence of *n* integers:always requires *n*-1 comparisons; traverse list from 2 to *n*, comparing at each iteration
 - b) To locate an element in a list of *n* terms with linear search:Least number of comparisons is 1; occurs if the element to be located is the first element in the list
 - c) To locate an element in a list of *n* terms with binary search:Least number of comparisons is 1; occurs if the element to be located is the first element inspected, i.e. the middle element in the list
- 16- The search algorithm resembles binary search, except that it divides the list of numbers into 4 sublists. Since binary search has worst-case time complexity of $O(\log n)$ where $\log n = \log_2 n$, then this search algorithm will worst-case time complexity of $O(\log_4 n) = O(\log n)$. This is caused by the fact that the list is continuously subdivided into 4 equal-sized sublists.