AMERICAN UNIVERSITY OF BEIRUT ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT
EECE 340 SIGNALS AND SYSTEMS Summer 2012

Prof. Kabalan Midterm Exam July 17, 2012

Problem 1 (6 pts)

Consider the signal shown below

$$
x(t)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{t}} & t>1 \\
0 & t \leq 1
\end{array}\right\}
$$

a. Determine the total energy of this signal. Is $x(t)$ an Energy Signal? (3 pts)

$$
\mathrm{E}=\int_{1}^{\infty} \frac{1}{\mathrm{t}} \mathrm{dt}=\infty . \mathrm{X}(\mathrm{t}) \text { is not an energy signal }
$$

b. Determine the average power of this signal. Is $x(t)$ a power signal. (3 pts)

$$
P=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-t / 2}^{T / 2} \frac{1}{t} d t=\text { does not exist. } X(t) \text { is not a power signal. }
$$

Problem 2 (10 pts)

The output $\mathrm{y}(\mathrm{t})$ of a continuous-time system is related to its input $\mathrm{x}(\mathrm{t})$ by

$$
\mathrm{y}(\mathrm{t})=\cos [2 \mathrm{x}(\mathrm{t}+1)]+\mathrm{x}(\mathrm{t})
$$

a. Is the system linear? Justify your answer. (2 pts) No. due to the cosine function
b. Is the system time-invariant? Justify your answer. (2 pts)

Yes, after we apply definition
c. Is the system causal? Justify your answer. (2 pts)

No, $y(t)$ dependents on future values of $x(t)$
d. Is the system memoryless? Justify your answer. (2 pts)

No, $y(t)$ depends on future values of $x(t)$
e. Is the system stable? Justify your answer. (2 pts)

Yes. $\mathrm{X}(\mathrm{t})$ is bounded and so is $\cos [2(\mathrm{x}(\mathrm{t}+1)]$. This implies that $\mathrm{y}(\mathrm{t})$ is bounded.

Problem 3 (6 pts)

For the system shown below, determine the system transfer function

$$
\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})}=\frac{\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}+\mathrm{G}_{1} \mathrm{G}_{3}}{1+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{H}_{1}+\mathrm{G}_{2} \mathrm{H}_{2}+\mathrm{G}_{3} \mathrm{H}_{3}+\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{1} \mathrm{H}_{3}+\mathrm{G}_{2} \mathrm{G}_{3} \mathrm{H}_{2} \mathrm{H}_{3}}
$$

-2 for every incorrect term

Problem 4 (6 Pts)
Determine the forward transfer function of a unity feedback control system whose closed-loop transfer function is given by:

$$
\frac{Y(s)}{R(s)}=\frac{s+1}{s^{4}+3 s^{3}+4 s^{2}+6 s+5}
$$

$G(s)=\frac{s+1}{s^{4}+3 s^{3}+4 s^{2}+5 s+4}$

Problem 5 (6 pts)

The closed-loop transfer function of a unity feedback control system, whose input is $\mathrm{Y}(\mathrm{s})$ and output is $\mathrm{R}(\mathrm{s})$, is given by

$$
\frac{Y(s)}{R(s)}=\frac{10}{s^{5}+7 s^{4}+6 s^{3}+42 s^{2}+8 s+56}
$$

Check the stability of the above system by determining the number of poles in each half of the complex plane.
Correct table 3 points

S^{5}	1	6	8
S^{4}	1	6	8
S^{3}	θ	θ	$A(s)=s^{4}+6 s^{2}+8$
S^{3}	4	12	$A^{\prime}(s)=4 s^{3}+12 s$
S^{2}	3	8	
S^{1}	4		
S^{0}	8		

$A(s)=0 \Rightarrow s= \pm 2 j$, and $s= \pm \sqrt{2} j$
Root Distributions: (1, 4, 0) 3 pts

Problem 6 (6 pts)

A linear time-invariant system, whose output is $y(t)$ and input $r(t)$, is represented by the following transfer function

$$
\frac{Y(s)}{R(s)}=\frac{10 s+6}{2 s^{2}+8 s+56}
$$

Write the state and output equations of this system
$\left[\begin{array}{l}X_{1}^{\prime}(t) \\ X_{2}^{\prime}(t)\end{array}\right]=\left[\begin{array}{cc}-4 & 1 \\ -28 & 0\end{array}\right]\left[\begin{array}{l}X_{1}(t) \\ X_{2}(t)\end{array}\right]+\left[\begin{array}{l}5 \\ 3\end{array}\right] r(t) 4$ pts
$y(t)=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}X_{1}(t) \\ X_{2}(t)\end{array}\right]+[0] r(t) 2 p t s$

Problem 7 (6 pts)

A sinusoidal signal (Carrier) has a period of 10 ms . At $t=0$, the signal has a value of 20 V . It reaches its first positive peak 2 ms later. Determine the equation of the signal.
$\mathrm{c}(\mathrm{t})=\mathrm{A} \cos \left(\omega_{\mathrm{C}} \mathrm{t}+\phi\right)$ with $\mathrm{T}=10^{-2} \mathrm{~s}, \omega_{\mathrm{C}}=2 \pi \mathrm{f}_{\mathrm{C}}=200 \pi \mathrm{rad} / \mathrm{s}=628.3 \mathrm{rad} / \mathrm{s} \quad 1 \mathrm{pt}$ $c(0)=A \cos (\phi)=20$,
$\mathrm{c}\left(2 \cdot 10^{-3}\right)=\mathrm{A}=\mathrm{A} \cos (0.4 \pi+\phi) \Rightarrow \phi=-0.4 \pi=-1.25662 \mathrm{pts}$
$\mathrm{A}=\frac{20}{\cos (-0.4 \pi)}=64.72$
$c(t)=64.72 \cos (628.3 t-1.257)$ Volts 2 pts

Problem 8 (6 pts)

Using the FT properties, determine the Fourier transform of the following function

$$
\mathrm{y}(\mathrm{t})=5 \mathrm{e}^{3 \mathrm{t}} \mathrm{u}(-\mathrm{t})
$$

Where $u(t)$ is the unit step function. Please simplify your expression for full points.
$Y(\omega)=\int_{-\infty}^{0} 5 e^{3 t} e^{-j \omega t} d t=\frac{5}{3-j \omega}$

Problem 9 (6 pts)

The spectrum of the message signal $\mathrm{m}(\mathrm{t})$ is shown below

a. Write the time domain representation $\mathrm{s}(\mathrm{t})$ of the signal shown below. (4 pts)

This is the positive frequency part of a DSB-LC signal. $\mathrm{s}(\mathrm{t})=12 \cos \left(\omega_{\mathrm{C}} \mathrm{t}\right)+2 \mathrm{~m}(\mathrm{t}) \cos \left(\omega_{\mathrm{C}} \mathrm{t}\right)$.

It is given by:

$$
\begin{aligned}
\frac{1}{2}[s(t)+j \hat{s}(t)] & =6 \cos \left(\omega_{C} t\right)+m(t) \cos \left(\omega_{C} t\right)+j 6 \sin \left(\omega_{C} t\right)+j m(t) \sin \left(\omega_{C} t\right) \\
& =6 e^{j \omega_{c} t}+4 m(t) e^{j \omega_{c} t}
\end{aligned}
$$

b. Is $s(t)$ is a real-valued signal? Explain. (2 pts)

No as no symmetry about the zero frequency.

Problem 10 (8 pts)

Let $\mathrm{m}(\mathrm{t})$ be a band-limited signal of bandwidth W rad/s. Using $\mathrm{m}(\mathrm{t})$, we construct the signal $\mathrm{s}(\mathrm{t})=\mathrm{A}[1+\mathrm{m}(\mathrm{t})] \cos \left(\omega_{0} \mathrm{t}\right)$ where $\omega_{0} \gg \mathrm{~W} \operatorname{rad} / \mathrm{s}$. The signal $\mathrm{s}(\mathrm{t})$ is imputed to the following system. Let $\mathrm{y}(\mathrm{t})$ be the output of the system as shown below.

a. Determine $y(t) .(4 \mathrm{pts})$

The output of the multiplier:

$$
\begin{aligned}
& s(t) \cos \left(\omega_{C} t\right)=A_{C}[1+m(t)] \cos \left(\omega_{C} t\right) \cos \left(2 \omega_{C} t\right) \\
&=\frac{A_{C}}{2}[1+m(t)] \cos \left(\omega_{C} t\right)+\frac{A_{C}}{2}[1+m(t)] \cos \left(3 \omega_{C} t\right) \\
& y(t)=\frac{A_{C}}{2}[1+m(t)] \cos \left(\omega_{C} t\right)
\end{aligned}
$$

b. Determine the bandwidth of $\mathrm{y}(\mathrm{t})$. (4 pts)
$B W=2 W \mathrm{rad} / \mathrm{s}$.

Problem 11 (8 pts)

An AM (DSB-LC) waveform, denoted by $\mathrm{x}_{\mathrm{c}}(\mathrm{t})$, is shown above. Assume that the message signal is sinusoidal.

1. Find the modulation index. (4 Pts)

$$
\begin{aligned}
& \mathrm{A}_{\max }=10 \mathrm{~V}, \mathrm{~A}_{\min }=5 \mathrm{~V} \\
& \mu=\frac{\mathrm{A}_{\max }-\mathrm{A}_{\min }}{\mathrm{A}_{\max }+\mathrm{A}_{\min }}=\frac{5}{15}=\frac{1}{3}
\end{aligned}
$$

2. Calculate the carrier power. (4 Pts)

$$
\begin{aligned}
& \mathrm{A}_{\max }=\mathrm{A}_{\mathrm{C}}[1+\mu] \Rightarrow 10=\mathrm{A}_{\mathrm{C}}\left[1+\frac{1}{3}\right] \Rightarrow \mathrm{A}_{\mathrm{C}}=\frac{15}{2} \text { Volts } \\
& \mathrm{P}_{\mathrm{av}}=\frac{1}{2}\left(\frac{15}{2}\right)^{2}=\frac{225}{8}=28.125 \text { Watts }
\end{aligned}
$$

Problem 12 (6 pts)

A Frequency modulated (FM) signal of carrier frequency 2 MHz , frequency sensitivity $\mathrm{k}_{\mathrm{f}}=100 \mathrm{~Hz} / \mathrm{V}$, and information signal $\mathrm{m}(\mathrm{t})$ given by

$$
m(t)=100 \cos (150 \pi t)+200 \cos (300 \pi t)
$$

Write the time domain expression of corresponding FM signal.
$\mathrm{s}(\mathrm{t})=\mathrm{A}_{\mathrm{C}} \cos \left[4 \pi \cdot 10^{6} \mathrm{t}+\frac{400}{3}(\sin 150 \pi \mathrm{t}+\sin 300 \pi \mathrm{t})\right]$
-2 pts if the above term is wrong

Problem 13 (10 pts)

An FM signal is given by:

$$
s(t)=100 \cos \left\lfloor 2 \pi \cdot 10^{5} t+3 \sin (100 \pi t)\right\rfloor
$$

a. Determine the bandwidth of this FM signal using the 1% rule. (4 pts) $\beta=3$, using Bessel table, $\mathrm{BW}=10 \omega_{\mathrm{m}}=1000 \pi \mathrm{rad} / \mathrm{s}$
b. Determine bandwidth of this FM signal using Carson's rule. (4 pts

$$
\beta=3, B W=2 \omega_{\mathrm{m}}(1+\beta)=8 \omega_{\mathrm{m}}=800 \pi \mathrm{rad} / \mathrm{s}
$$

c. Compare your results and explain. (2 pts)

Carson's rule is an approximate rule.

Problem 14 (10 pts)

An FM signal is described by
$\mathrm{s}(\mathrm{t})=50 \cos \left[2 \pi \cdot 10^{6} \mathrm{t}+10^{6} \mathrm{t}+0.001 \cos (1000 \pi \mathrm{t})\right\rfloor$
a. Determine the instantaneous frequency of the signal. (4 pts)

$$
\begin{aligned}
& s(t)=50 \cos \left[(1+2 \pi) \cdot 10^{6} t+0.001 \cos (1000 \pi t)\right] \\
& \omega_{\mathrm{i}}(\mathrm{t})=(1+2 \pi) \cdot 10^{6}-\pi \cos (1000 \pi \mathrm{t})
\end{aligned}
$$

b. Is the signal a narrowband or wideband frequency modulation? (4 pts)

Narrow band as $\beta=0.001 \lll 1$.
c. Determine the information signal. (2 pts)
$\omega_{\mathrm{i}}(\mathrm{t})=\omega_{\mathrm{C}}+\mathrm{k}_{\mathrm{f}} \mathrm{m}(\mathrm{t})=(1+2 \pi) \cdot 10^{6}-\pi \cos (1000 \pi \mathrm{t})$
$\mathrm{m}(\mathrm{t})=-\frac{\pi}{\mathrm{k}_{\mathrm{f}}} \cos (100 \pi \mathrm{t})$ Volts

