AMERICAN UNIVERSITY OF BEIRUT

Department of Electrical and Computer Engineering
EECE340 Signals and Systems -Summer 2011
Section 4 -Prof Karameh

Problem Set 5

Out: Monday August 1, 2011
NOT Due:

Problem 1

Compute the Fourier Transform of each of the following signals:
a $x[n]=\left(\frac{1}{3}\right)^{|n|} u[-n-2]$.
b $x[n]=\sin \left(\frac{\pi n}{2}\right)+\cos (n)$.
The following are the Fourier transforms of discrete-time signals. Find the corresponding signals for each transform.
(c) $\tilde{X}\left(e^{j \Omega}\right)=4 e^{j 2 \Omega}-e^{j \Omega}+5+3 e^{-j 3 \Omega}-16 e^{-j 12 \Omega}$.
(c) $\tilde{X}\left(e^{j \Omega}\right)= \begin{cases}1, & 0 \leq|\Omega|<\frac{\pi}{4}, \frac{\pi}{2}<|\Omega| \leq \pi ; \\ 0, & \frac{\pi}{4}<|\Omega|<\frac{\pi}{2} .\end{cases}$
(e) $\tilde{X}\left(e^{j \Omega}\right)=\frac{1+3 e^{-j \Omega}}{1+\frac{1}{4} e^{-j \Omega}}$.

Problem 2

Consider an LTI system with the following unit sample response:

$$
h[n]=\frac{\sin (\pi n / 3)}{\pi n}
$$

What is the output of this system corresponding to the periodic square wave input shown in figure 1

Figure 1: Problem 2

Problem 3

Consider the signal

$$
x[n]=\sin \left(\frac{\pi n}{8}\right)-2 \cos \left(\frac{\pi n}{4}\right)
$$

Suppose that this signal is the input to an LTI system whose impulse response is

$$
h[n]=\frac{\sin (\pi n / 8) \sin (\pi n / 2)}{\pi^{2} n^{2}}
$$

Determine the corresponding output $y[n]$.

Problem 4

Consider a DT LTI system with the impulse response

$$
h[n]=\left(\frac{1}{2}\right)^{n} u[n]
$$

Determine, using DTFTs, the response to each of the following inputs:
(i) $x[n]=\left(\frac{3}{4}\right)^{n} u[n]$
(ii) $x[n]=(n+1)\left(\frac{1}{4}\right)^{n} u[n]$
(iii) $x[n]=(-1)^{n} u[n]$

Problem 5

Consider a system consisting of the cascade of two DT LTI systems with the frequency responses

$$
H_{1}\left(e^{j \Omega}\right)=\frac{2-e^{-j \Omega}}{1+\frac{1}{2} e^{-j \Omega}}
$$

and

$$
H_{2}\left(e^{j \Omega}\right)=\frac{1}{1-\frac{1}{2} e^{-j \Omega}+\frac{1}{4} e^{-j 2 \Omega}}
$$

a) Find the difference equation describing the overall system.
b) Determine the impulse response of the overall system.

Problem 6

In this problem you will explore the computation of a signal frequency content using DFTs. In particular, you will be using the FFT implementation in Matlab to find the DFT.
(1) Recall that the DFT essentially computes the spectrum of a signal $x[n]$ at discrete steps in frequency. That is, given a signal $x[n] 0 \leq n \leq N-1$, then the N-pt DFT will compute

$$
X[k]=\left.\frac{1}{N} X\left(e^{j \Omega}\right)\right|_{\Omega=\frac{2 \pi}{N}}
$$

(2) The matlab implementation (FFT) computes the DFT slightly differently than what you learned in class. If you type help fft at the command prompt in Matlab, you will get something like:
\gg help fft

FFT Discrete Fourier transform.

$F F T(X)$ is the discrete Fourier transform (DFT) of vector X. For matrices, the FFT operation is applied to each column. For N-D arrays, the FFT operation operates on the first non-singleton dimension.
$F F T(X, N)$ is the N-point FFT, padded with zeros if X has less than N points and truncated if it has more.

For length N input vector x, the DFT is a length N vector X, with elements:

$$
\begin{equation*}
X(k)=\sum_{n=1}^{N} x(n) * \exp ^{-j \frac{2 * \pi *(k-1) *(n-1)}{N}} \quad 1 \leq k \leq N \tag{1}
\end{equation*}
$$

The inverse DFT (computed by IFFT) is given by

$$
\begin{equation*}
x[n]=\frac{1}{N} \sum_{k=1}^{N} X[k] * e x p^{j \frac{2 * \pi(k-1) *(n-1)}{N}} \quad 1 \leq n \leq N \tag{2}
\end{equation*}
$$

This is different in (a) the fraction $\frac{1}{N}$ is included in the IDFT formula and not in the DFT as we learned in class. This variation is common and acceptable as long as $\frac{1}{N}$ is included in either analysis or synthesis formulas. (The fraction is also sometimes split into two $\frac{1}{\sqrt{N}}$ in both formulas). In addition, since matlab cannot handle vectors with zero index such as $X[0]$, the summation is over $[1, N]$ and not $[0, N-1]$, which is used such that $X[1]$ corresponds to zero frequency.

We are now ready to start applying FFT.
Assume that we sampled a CT signal $x(t)=\cos \left(2 \pi f_{o} t\right)\left(f_{o} \mathrm{~Hz}\right.$ tone $)$ at a rate of 200 Hz for 0.5 seconds. Assume that $f_{o}=55 \mathrm{~Hz}$ is unknown and we would like to estimate it using Matlab.
a- Create the corresponding DT signal $x[n]$. Plot this signal with respect to time $(1 / F s \leq t \leq 0.5) \mathrm{sec}$. Verify that you have 100 samples. An efficient way to create the time vector here is:

$$
\mathrm{t}=1 / \mathrm{Fs}: 1 / \mathrm{Fs}: 0.5
$$

b- Now use the function $f f t$ to compute the DFT of $x[n]$. That is, type $f x 1=$ $f f t(x)$. This will compute the 100 pt DFT of $x[n]$. Since the DFT $X[k]$ is in general a complex quantity, plot its absolute magnitude. hint: since you are plotting discrete points, use the function stem instead of plot. An efficient way of doing this is:

$$
\mathrm{fx} 1=\operatorname{abs}(\mathrm{fft}(\mathrm{x})) ; \operatorname{stem}(\mathrm{fx} 1)
$$

c- Verify that $X[k]$ is plotted for $k=1 \ldots N$. For what values of Ω (discrete frequency) does each sample k correspond to?
d- For what values of w (continuous frequencies) does each sample correspond to? Plot $X[k]$ versus w. Recall that the $w_{s}=2 \pi 200 \mathrm{rad} / \mathrm{sec}$ sampling frequency corresponds to $\Omega=2 \pi$. That is, we are moving in the DFT as $\mathrm{k}=1: 1: \mathrm{N} ; \mathrm{In}$ the DTFT as $\mathrm{fs}_{\mathrm{d}}=(1 / \mathrm{N}: 1 / \mathrm{N}: 1) * 2 \pi$; and in the Continuous domain as $w s_{c}=(1 / N: 1 / N: 1) * 2 \pi F s($ in $\mathrm{rad} / \mathrm{sec})$ or $f s_{c}=(1 / N: 1 / N: 1) * F s$ in Hz.
e- We will now estimate the frequency f_{o} based on the DFT plot. Recall that the obtained peaks in $X[k]$ are proportional to samples of the spectrum $X\left(e^{j \Omega}\right.$. Verify that the peak(s) you obtained is (are) close to the expected frequency of $2 \pi f_{o}=2 \pi 55$. Is the result accurate? Why/why not?
f- We will now increase the size of the DFT to 200 points. That is, we are effectively zero-padding the signal $x[n]$ and then computing the DFT. For this, compute $f x 2=f f t(x, 200)$. Plot fx2 versus w. How did your results change from before? Are they more accurate? Why/why not? Explain carefully.
g- What happens if the frequency we are trying to estimate is $f_{o}=110 \mathrm{~Hz}$ instead of 55 Hz ? Plot the DFT and explain what you obtain.

Problem 7

$y_{1}[n]$ and $y_{2}[n]$ are two real 8-pt sequences. You are given the first five points of their DFTs as

$$
\tilde{Y}_{1}[k]=\left[\begin{array}{ccccc}
2 & 1 & 0 & 1 & 2
\end{array}\right]
$$

$$
\tilde{Y}_{2}[k]=\left[\begin{array}{lllll}
0 & 1 & 2 & 0 & 0
\end{array}\right]
$$

- Find the complete sequence $\tilde{Y}_{1}[k]$ and $\tilde{Y}_{2}[k]$. Hint: Exploit knowledge of DFT properties for real sequences.
- Find the sequence formed by the circular convolution of y_{1} and y_{2}. That is, find

$$
z[n]=y_{1}[n] \odot y_{2}[n] .
$$

