AMERICAN UNIVERSITY OF BEIRUT

Department of Electrical and Computer Engineering EECE340 Signals and Systems- Summer 2011
 Prof. F Karameh
 Problem Set 5 Solutions

Problem 1

a)

$$
\begin{aligned}
& x[n]=\left(\frac{1}{3}\right)^{|n|} u[-n-2] \\
& =>X\left(e^{j \Omega}\right)=\sum_{k=-\infty}^{\infty} x[k] e^{-j \Omega k} \\
& =\sum_{k=-\infty}^{-2}\left(\frac{1}{3}\right)^{-k} e^{-j \Omega k} \\
& =\sum_{k=2}^{\infty}\left(\frac{1}{3} e^{j \Omega}\right)^{k} \\
& =\frac{1}{1-\frac{1}{3} e^{j \Omega}}-1-\frac{1}{3} e^{j \Omega} \\
& =\frac{\frac{1}{9} e^{2 j \Omega}}{1-\frac{1}{3} e^{j \Omega}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& x[n]=\sin \left(\frac{\pi n}{2}\right)+\cos (n) \\
& =>X\left(e^{j \Omega}\right)=\sum_{k=-\infty}^{\infty} x[k] e^{-j \Omega k} \\
& =\frac{\pi}{j}\left(\sum_{k=-\infty}^{\infty} \delta\left(w-\frac{\pi}{2}-2 \pi k\right)-\sum \delta\left(w-\frac{\pi}{2}+2 \pi k\right)\right)+\pi\left(\sum \delta(w-1-2 \pi k)-\sum \delta(w-1+2 \pi k)\right) \\
& \text { c) } \\
& X\left(e^{j \Omega}\right)=4 e^{2 j \Omega}-e^{j \Omega}+5+3 e^{-3 j \Omega}-16 e^{-12 j \Omega} \\
& =x[n]=4 \delta[n+2]-\delta[n+1]+5 \delta[n]+3 \delta[n-3]-16 \delta[n-12] \\
& \left(u \sin g--- \text { that }:: D T F T^{-1}\left(e^{j \Omega n^{0}}\right)=\delta\left[n-n^{0}\right]\right)
\end{aligned}
$$

d)

$$
\begin{aligned}
& x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \Omega}\right) e^{j \Omega} d \Omega \\
& =\frac{1}{2 \pi}\left(\int_{-\pi}^{-\pi / 2} X\left(e^{j \Omega}\right) e^{j \Omega} d \Omega+\int_{-\pi / 4}^{\pi / 4} X\left(e^{j \Omega}\right) e^{j \Omega} d \Omega+\int_{\pi / 2}^{\pi} X\left(e^{j \Omega}\right) e^{j \Omega} d \Omega\right) \\
& =\frac{1}{2 j \pi n}\left[e^{-j \frac{\pi}{2} n}-e^{-j \pi n}\right]+\frac{1}{2 j \pi n}\left[e^{j \frac{\pi}{4} n}-e^{-j \frac{\pi}{4} n}\right]+\frac{1}{2 j \pi n}\left[e^{j \pi n}-e^{j \frac{\pi}{2} n}\right] \\
& =\frac{1}{2 j \pi n}\left[e^{-j \frac{\pi}{2} n}-e^{j \frac{\pi}{2} n}\right]+\frac{1}{2 j \pi n}\left[e^{j \frac{\pi}{4} n}-e^{-j \frac{\pi}{4} n}\right]+\frac{1}{2 j \pi n}\left[e^{j \pi n}-e^{-j \pi n}\right] \\
& =\frac{-1}{\pi n} \sin \left(\frac{\pi}{2} n\right)+\frac{1}{\pi n} \sin \left(\frac{\pi}{4} n\right)
\end{aligned}
$$

e)

$$
\begin{aligned}
& X\left(e^{j \Omega}\right)=\frac{1+3 e^{-j \Omega}}{1+\frac{1}{4} e^{-j \Omega}} \\
& \Rightarrow x[n]=\left(\frac{-1}{4}\right)^{n} u[n]+3\left(\frac{-1}{4}\right)^{n-1} u[n-1]
\end{aligned}
$$

Problem 2
$h[n]=\frac{\sin \left(\frac{\pi n}{3}\right)}{\pi n}$
$x t[n]$ is the non periodic version of $x[n] \ldots$

$$
\begin{aligned}
& \text { then } X_{T}\left(e^{j \Omega}\right)=\frac{\sin \frac{(2 M+1) \Omega}{2}}{\sin \frac{\Omega}{2}}=\frac{\sin \left(\frac{5 \Omega}{2}\right)}{\sin \frac{\Omega}{2}} \\
& \left.\left.\Rightarrow X\left(e^{j \Omega}\right)=\frac{2 \pi}{N} \sum_{n=-\infty}^{\infty} X_{T}\left(e^{j \Omega}\right) \right\rvert\, \delta \Omega-\frac{2 \pi}{N} n\right)-------N=8--\Omega=\frac{2 \pi}{N} \\
& =\frac{2 \pi}{8} \sum_{n=-\infty}^{\infty} \frac{\sin \left(\frac{5}{2} \frac{2 \pi}{8}\right)}{\sin \frac{\Omega}{2} \frac{2 \pi}{8}} \delta\left(\Omega-\frac{2 \pi}{8} n\right)
\end{aligned}
$$

After passing through the low pass filter H, the only surviving terms are Ω between
-pi/3 and pi/3.i.e $\mathrm{n}=0, \mathrm{n}=1, \mathrm{n}=-1$
$Y\left(e^{j \Omega}\right)=X\left(e^{j \Omega}\right) H\left(e^{j \Omega}\right)$
$=\frac{5 \pi}{4} \delta(w)+\frac{\pi}{4} \frac{\sin \frac{5 \pi}{8}}{\sin \frac{\pi}{8}}\left[\delta\left(w+\frac{\pi}{4}\right)+\delta\left(w-\frac{\pi}{4}\right)\right]$
over.one.period
$\Rightarrow y[n]=\frac{5}{8}+\frac{1}{4} \frac{\sin \frac{5 \pi}{8}}{\sin \frac{\pi}{8}} \cos \left(\frac{\pi}{4} n\right)$

Problem 3

$$
\begin{aligned}
& \cdot x[n]= \sin \left(\frac{\pi}{8} n\right)-2 \cos \left(\frac{\pi}{4} n\right) \\
& \Rightarrow \tilde{x}\left(e^{j \Omega}\right)=\frac{\pi}{\gamma}\left[\sum_{k=\infty}^{\infty} \delta\left(\Omega-\frac{\pi}{8}-2 \pi k\right)-\delta\left(\Omega+\frac{\pi}{8}-2 \pi k\right)\right] \\
&-2 \pi\left[\sum_{-\infty}^{\infty} \delta\left(\Omega-\frac{\pi}{4}-2 \pi k\right)+\delta\left(\Omega+\frac{\pi}{4}-2 k \pi\right)\right] \\
& \cdot h[n]= \frac{\sin \left(\frac{\pi}{8} n\right) \sin \left(\frac{\pi}{2} n\right)}{\pi n} \\
& \Rightarrow H\left(e^{j \Omega}\right)=\left[F\left\{\frac{\sin \left(\frac{\pi}{8} n\right)}{\pi n}\right\} * F\left\{\frac{\sin \left(\frac{\pi n}{2}\right)}{\pi n}\right\}\right]\left(\frac{1}{2 \pi}\right) \\
&,=\left[H_{1}\left(e^{j \Omega}\right) \otimes H_{2}\left(e^{j \Omega}\right)\right]\left(\frac{1}{2 \pi}\right)
\end{aligned}
$$

where

Todo circular comolution, choos se to loe non poriodicand perform regular coveolution over one periond

(1) start at $\Omega=-\pi \Rightarrow \Omega+\frac{\pi}{2}=-\frac{\pi}{2} \Rightarrow$ no intersection $\Rightarrow H_{1}+H_{2}=0$
(2) for $\Omega+\frac{\pi}{2}>-\frac{\pi}{8} d \Omega+\frac{\pi}{2}<\frac{\pi}{8}$
$\Rightarrow-\frac{5}{8} \pi<\Omega<-\frac{3 \pi}{8} \quad: H_{1} * H_{2}=\int_{-\frac{\pi}{8}}^{\Omega+\frac{\pi}{2}} d \lambda=\Omega+\frac{5}{8} \pi$
(3) $f \Omega \Omega+\frac{\pi}{2}>\frac{\pi}{8} \& \Omega \cdot \frac{\pi}{2}<-\frac{\pi}{8}$

$$
\Rightarrow-\frac{3 \pi}{8}<\Omega<\frac{3 \pi}{8} \quad ; H_{1} * H_{2}=\frac{\pi}{4}
$$

(4) fr $\left.\Omega-\frac{\pi}{2}\right\rangle-\frac{\pi}{8}$ and $\Omega \cdot \frac{\pi}{2}\left\langle\frac{\pi}{8}\right.$

$$
\Rightarrow \frac{3 \pi}{8}<\Omega<\frac{5 \pi}{8} \quad H_{1} * H_{2}=\int_{\Omega-\frac{\pi}{2}}^{\frac{\pi}{8}} d \lambda=\frac{5 \pi}{8}-\Omega
$$

(5) fun $\Omega>\frac{5 \pi}{3} \Rightarrow$ no intersection $\Rightarrow H_{1} * H_{2}=0$
thus, we have : $H_{1} \circledast H_{2}$ looks as follows:

Accordingly, we get $\tilde{H}\left(e^{j \Omega}\right)=\frac{1}{2 \pi} H_{1} \circledast H_{2}$ as follows
(i) We have

$$
X\left(e^{j \omega}\right)=\frac{1}{1-\frac{3}{4} e^{-j \omega}} .
$$

Therefore,

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =\left[\frac{1}{1-\frac{3}{4} e^{-j \omega}}\right]\left[\frac{1}{1-\frac{1}{2} e^{-j \omega}}\right] \\
& =\frac{-2}{1-\frac{1}{2} e^{-j \omega}}+\frac{3}{1-\frac{3}{4} e^{-j \omega}}
\end{aligned}
$$

Taking the inverse Fourier transform, we obtain

$$
y[n]=3\left(\frac{3}{4}\right)^{n} u[n]-2\left(\frac{1}{2}\right)^{n} u[n] .
$$

(ii) We have

$$
X\left(e^{j \omega}\right)=\frac{1}{\left(1-\frac{1}{4} e^{-j \omega}\right)^{2}}
$$

Therefore,

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =\left[\frac{1}{\left(1-\frac{1}{4} e^{-j \omega}\right)^{2}}\right]\left[\frac{1}{1-\frac{1}{2} e^{-j \omega}}\right] \\
& =\frac{4}{1-\frac{1}{2} e^{-j \omega}}-\frac{2}{1-\frac{1}{4} e^{-j \omega}}-\frac{3}{\left(1-\frac{1}{4} e^{-j \omega}\right)^{2}}
\end{aligned}
$$

Taking the inverse Fourier transform, we obtain

$$
v[n]=4\left(\frac{1}{2}\right)^{n} u[n]-2\left(\frac{1}{4}\right)^{n} u[n]-3(n+1)\left(\frac{1}{4}\right)^{n} v[n] .
$$

(ii)

$$
x(n)=(-)^{n} u(n)=e^{i \sqrt{n}} u(n)
$$

$$
f\left(y(n)=u(n) \longrightarrow y\left(e^{i n}\right)=\frac{1}{1-e^{-i n}}+i \sum_{k} s(\Omega \cdot 2 n k)\right.
$$

$$
x(n)=e^{i n} y(n) \rightarrow y\left(e^{i n}\right)=y\left(e^{i(n-\pi)}\right)
$$

$$
\therefore x\left(c^{i n}\right)=\frac{1}{1-e^{i(\lambda, n)}}+n \sum_{k} \delta(\Omega-n-2(\pi k))
$$

$$
=\frac{1}{1+e^{-i}}+\pi<e_{r}^{i(\lambda+)} \delta(\Omega-\pi(2 f+1))
$$

$$
h(n)=\left(\frac{1}{2}\right)^{n} n^{(n)} \Rightarrow H\left(e^{i n}\right)=\frac{1}{1-\frac{1}{2} e^{-i}}
$$

$$
\text { onipnt } z(n)=h(n) * x(n) \Rightarrow z\left(c^{i n}\right)=\left(\frac{1}{1-\frac{k}{2} e^{-i n}}\right)\left(\frac{1}{\left.1+e^{-i n}\right)+\pi \sum \delta\left(\Omega-\left(k_{1}\right)\right.}\right.
$$

$$
\therefore z\left(e^{i+}\right)=\frac{1}{\left(1-\frac{1}{2} e^{-i}\right)\left(1+e^{-i}\right)}+\pi \sum_{k} \frac{1}{\left(+\frac{1}{2} e^{-j} 2 k+1 \pi\right.} \delta(\Omega-(2 k+3) \pi)
$$

$$
=\frac{A}{1+e^{-i}}+\frac{B}{1-\frac{1}{2} e^{-i n}}+\pi \sum_{k} \frac{2}{3} \delta(\Omega-(2 k+1) \pi)
$$

were $A=\frac{2}{3} \quad$ d $B=\frac{1}{3}$

$$
\begin{aligned}
& \text { whe } A=\frac{2}{3} d B=\frac{1}{3} \\
& \therefore z\left(e^{i n}\right)=\frac{\frac{1}{3}}{1-\frac{1}{2} e^{-i n}}+\frac{2}{3}\left[\frac{1}{1+e^{-i n}}+\pi \sum_{k} \delta\left(n-(2++1)^{n}\right]\right. \\
& \Rightarrow z(n)=\frac{1}{3}\left(\frac{1}{6}\right)^{n} n(n)+\frac{2}{3}(-1)^{n} n(n)
\end{aligned}
$$

Problem 5

(a) Since the two systems are cascaded, the frequency response of the overall system is

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =H_{1}\left(e^{j \omega}\right) H_{2}\left(e^{j \omega}\right) \\
& =\frac{2-e^{-j \omega}}{1+\frac{1}{8} e^{-j 3 \omega}}
\end{aligned}
$$

Therefore, the Fourier transforms of the input and output of the coverall systems related by

$$
\frac{Y\left(e^{j \omega}\right)}{\bar{X}\left(e^{j \omega}\right)}=\frac{2-e^{-j \omega}}{1+\frac{1}{8} e^{-j \omega}} .
$$

Cross-multiplying and taking the inverse Fourier transform, we get

$$
y[n]+\frac{1}{8} y[n-3]=2 x[n]-x[n-1] .
$$

b) We may rewrite the overall frequency response as

$$
H\left(e^{j \omega}\right)=\frac{4 / 3}{1+\frac{1}{2} e^{-j \omega}}+\frac{(1+j \sqrt{3}) / 3}{1-\frac{1}{2} e^{j 120} e^{-j \omega}}+\frac{(1-j \sqrt{3}) / 3}{1-\frac{1}{2} e^{-j 120} e^{-j \omega}} .
$$

Taking the inverse Fourier transform we get

$$
h[n]=\frac{4}{3}\left(-\frac{1}{2}\right)^{n} u[n]+\frac{1+j \sqrt{3}}{3}\left(\frac{1}{2} e^{j 120}\right)^{n} u[n]+\frac{1-j \sqrt{3}}{3}\left(\frac{1}{2} e^{-j \mid 20}\right)^{n} t[n]
$$

Problem 6
The code is given below.
For $x(t)=\cos (2 p i \quad 55 t)$
Theoretically, $\mathrm{X}(\mathrm{w})$ should have a peak at 55 Hz . Since we are effectively plotting the sampled version of $x(t)$ (called xs(t)), we should observe Xs(w) which is periodic with period $2 * p i * F s$. Plotting things in Hz and not rad/sec, we should then have a peak at 55 Hz , and another at 200$55=145 \mathrm{~Hz}$.

Now the signal is sampled and also we have only a finite length segment of it (for 0.5 sec). Therefore Xs(w) is really the original signal
convolved with a sinc function in frequency (since in time it is windowed by a rectangular pulse).

Practically, taking a 100 pt DFT will give a sampled version of the signal $X(w)$ at intervals of Fs/N $=200 / 100=2 \mathrm{~Hz}$, starting from 0 Hz . Accordingly, the DFT will not "hit" the peak at 55 Hz , but rather give samples around it.

On the other hand, taking a 200 pt DFT will give a sampled version of the signal $X(w)$ at intervals of Fs/N $=200 / 200=1 \mathrm{~Hz}$, starting from 0 Hz . That is we are having a better sampled version of $\mathrm{Xs}(\mathrm{w})$ and should thus look more like the theoretical result. This time, the DFT will "hit" the peak at 55 Hz , as is shown in the figure.

For $x(t)=\cos (2 p i 110 t)$,
Theoretically, $\mathrm{X}(\mathrm{w})$ should have a peak at 110 Hz . Importantly, the sampled signal now is aliased since Fs=200 Hz, which is less the Nyquist rate. Therefore, Xs(w) will have another peak at 200-110 $\mathrm{Hz}=90 \mathrm{~Hz}$.

Again, we have a finite window of the data, so Xs(w) should be convolved with a sinc in frequency (since it is effectively multiplied with a rectangular function in time).

Practically, taking a 100 pt DFT will give a sampled version of the signal $X(w)$ at intervals of Fs/N $=200 / 100=2 \mathrm{~Hz}$, starting from 0 Hz .
Accordingly, the DFT now "hits" the peaks at 90 and 110 Hz , but one might be fooled into thinking that the frequency is actually 90 Hz .

Taking the 200 pt DFT will give closer samples in frequency and the shape of $\mathrm{X}(\mathrm{w})$ is more apparent.

Finally, I also added a 2048 pt DFT which will give a much finer representation of the signal Xs(w) close to what one expects theoretically.

Fs=200; \%Hz
\%CREATE THE TIME VECTOR
t=1/Fs:1/Fs:0.5;
\%CREATE THE SIGNAL $X(t)$
$\mathrm{x}=\cos (2 * \mathrm{pi} * 55 * \mathrm{t})$;
\%.*(1+cos(2*pi*30*t));
figure(1);
subplot(211);
plot(t,x); title('Signal $x(t)=\cos (2 \backslash p i \quad 55 t)$ ')
N=length (t);
\%FIND THE DFT X[k]
fx1=abs(fft(x));
\%CREATE THE CORRESPONDING FREQUENCY VECTOR: K-> 2*PI*fS/N fsi=(1/N:1/N:1)*Fs;
\%PLOT AS A DISCRETE SAMPLED FUNCTION
subplot(212); stem(fs1,fx1);
\%add some labeling and make it look nice
title('DFT of $x(t)=c o s(2 \backslash p i ~ 50 t), 100-p t ~ F F T ') ; ~$ xlabel('frequency (Hz)');axis([0 2000 55]);
\%NOW INCREASE THE SIZE OF THE DFT TO 200 POINTS AND REPEAT

N1 $=2$ *N;
figure(2);
$\mathrm{fx} 2=\mathrm{abs}(\mathrm{fft}(\mathrm{x}, \mathrm{N} 1))$; $\mathrm{fs} 2=(1 / \mathrm{N} 1: 1 / \mathrm{N} 1: 1)$ *Fs;
stem(fs2,fx2);
\%add some labeling and make it look nice
title('DFT of $x(t)=c o s(2 \backslash p i ~ 50 t), ~ 200-p t ~ F F T I) ; ~$
xlabel('frequency (Hz)'); axis([0 200 0 55]);
figure (3);
N2=2048;
$\mathrm{fx} 2=\mathrm{abs}(\mathrm{fft}(\mathrm{x}, \mathrm{N} 2))$; fs2=(1/N2:1/N2:1)*Fs;
plot(fs2,fx2);
title('Fourier transform of $x(t)=\cos (2 \backslash p i ~ 55 t), 2048$ pt DFT');
xlabel('frequency (Hz)'); axis([0 200 0 55]);
\%NOW LET FO=110 HZ AND REPEAT
$\mathrm{x}=\cos (2 * \mathrm{pi} * 110 * \mathrm{t})$;
figure(4);
subplot(211); plot(t,x);

```
N=length(t);
%FIND THE DFT X[k]
fx1=abs(fft(x));title('Signal x(t)= cos(2\pi 110t)')
%CREATE THE CORRESPONDING FREQUENCY VECTOR: K-> 2*PI*fS/N
fs1=(1/N:1/N:1) *Fs;
%PLOT AS A DISCRETE SAMPLED FUNCTION
subplot(212); stem(fs1,fx1);
%add some labeling and make it look nice
title('DFT of x(t)=cos(2\pi 110t), 100-pt FFT');
xlabel('frequency (Hz)');axis([0 200 0 55]);
%NOW INCREASE THE SIZE OF THE DFT TO 200 POINTS AND REPEAT
N1=2*N;
figure(5);
fx2=abs(fft(x,N1)); fs2=(1/N1:1/N1:1)*Fs;
stem(fs2,fx2);
%add some labeling and make it look nice
title('DFT of x(t)=cos(2\pi 100t), 200-pt FFT');
xlabel('frequency (Hz)'); axis([0 200 0 55]);
N1=2048
figure(6);
fx2=abs(fft(x,N1)); fs2=(1/N1:1/N1:1)*Fs;
plot(fs2,fx2); title('Fourier transform of x(t)=cos(2\pi 100t), 2048 pt
DFT');
xlabel('frequency (Hz)'); axis([0 200 0 55]);
```


Problem 7
a) $y_{y}(x)=\left[\begin{array}{llll}2 & 10 & 12\end{array}\right] ; \hat{y}_{2}(k)=\left[\begin{array}{lll}0 & 1 & 200\end{array}\right]$

$$
z(n)=y_{1}(n) \Theta_{8} y_{2}(n)
$$

Since we hae bapT DFT $\mathrm{t}_{1}(\mathrm{y})$, yn ly are real Tha Dfि is synnefic e u pis, $\Rightarrow \tilde{Y}_{1}(x)=\left[\begin{array}{llllll}2 & 1 & 1 & 1 & 2 & 1\end{array} 01\right]$

$$
\begin{aligned}
& \vec{z}(k)=\left(\tilde{y}_{1}(x) \vec{Y}_{2}(x)\right)=\left[\begin{array}{l}
\tilde{y}_{1}(x)=10120002 \\
010000101]
\end{array}\right. \\
& z(n)=\frac{1}{8} \sum z^{2}(k) e^{-\frac{10}{8} n k}=\frac{1}{8}\left(e^{-j \frac{2 n}{8} n}+e^{-j \frac{\partial n}{8} \pi}\right) \\
& =\frac{1}{D}\left(e^{-j \frac{\pi}{2} n}+e^{-j \frac{2 \pi}{\delta} n}\right) \\
& z(n)=\frac{1}{4} \cos \frac{\pi}{4} n \quad n=0.7
\end{aligned}
$$

