AMERICAN UNIVERSITY OF BEIRUT

Department of Electrical and Computer Engineering
EECE340 Signals and Systems -Summer 2011
Prof Karameh

Problem Set 3

Out: Thursday July 14, 2011
Due: Thurs July 21, 2011

Work individually and write your complete solutions on clean paper. Start early, no extensions will be allowed.

Problem 1

Find the unit sample response $h[n]$ for each of the system functions given below:

$$
\begin{align*}
& \tilde{H}(z)=\frac{1}{\left(1+\frac{1}{2} z^{-1}\right)\left(1-4 z^{-1}\right)\left(1-3 z^{-1}\right)} \quad \tilde{H}(z) \text { is stable system } \tag{1}\\
& \tilde{H}(z)=\frac{z^{3}-2 z}{z-2}, \quad \tilde{H}(z) \text { is an anti-causal system } \tag{2}\\
& \tilde{H}(z)=\frac{1}{\left(1-4 z^{-1}\right)\left(1-\frac{1}{3} z^{-1}\right)}, \quad \text { R.O.C. } \quad \frac{1}{3}<|z|<4 \tag{3}
\end{align*}
$$

Problem 2

For each of the following pairs of input sequences $x[n]$ and unit sample responses $h[n]$, find the output $y[n]=x[n] \star h[n]$ using convolution. Then verify the result using the Z-transform.
a) $x[n]=\delta[n+1]+\frac{1}{2} \delta[n]+\delta[n-1]+\frac{3}{2} \delta[n-2], \quad h[n]=\delta[n+1]-\delta[n]+\delta[n-1]$.
b) $x[n]=(-3)^{n} u[-n-1], \quad h[n]=\left(\frac{1}{2}\right)^{n} u[n+2]$.

Problem 3

Consider the cascade interconnection of three LTI causal DT systems shown in figure 1.
The unit sample response $g[n]$ of the equivalent overall system is shown in the same figure. The unit sample response $h_{2}[n]$ is given by

$$
h_{2}[n]=u[n]-u[n-2]
$$

Find $h_{1}[n]$ at $n=2$. Clearly show your work.

Figure 1:

Problem 4

Using $C T$ convolution, compute the output of the system $y(t)$ for the given pairs of input $x(t)$ and impulse response $h(t)$.

Figure 2: System Block Diagram Problem 4 a

Figure 3: System Block Diagram Problem 4 c
a) $x(t), h(t)$ as shown in figure 2 .
b) $x(t)=e^{(-4+2 t)} u(2-t)$ and $h(t)=4 e^{-t} u(t-1)$.
c) $x(t)$ and $h(t)$ as shown in figure 3.

Problem 5

An CT LTI system has an input $x(t)$, a system function $H(s)$ and an output $y(t)$. We are given the following:

$$
X(s)=\frac{s+5}{s-4}
$$

$x(t)=0, t>0$ and the corresponding output

$$
y(t)=-\frac{2}{3} e^{4 t} u(-t)+\frac{1}{3} e^{-2 t} u(t)
$$

a) Determine $H(s)$ and its region of convergence.
b) Determine $h(t)$, the impulse response of the system.

Problem 6

(a) Consider a CT LTI system described by the following differential equation

$$
\frac{d^{2} y}{d t^{2}}-2 \frac{d y(t)}{d t}-3 y(t)=x(t)
$$

(a-1) Determine the impulse response $h(t)$ if this system stable.
(a-2) Determine the impulse response $h(t)$ if this system is neither causal nor stable.
(b) Consider a CT LTI system S with inputs $x(t)$ and output $y(t)$.

If an input $x_{o}(t)=2 e^{-3 t} u(t-1)$ is applied, the corresponding (unknown) output is $y_{o}(t)$. If an input $x_{1}(t)=\frac{d x_{o}(t)}{d t}$, then the corresponding output is $y_{1}(t)=-3 y_{o}(t)+e^{-2(t-1)} u(t-1)$.
Find the impulse response $h(t)$ of this system.

Problem 7

Determine the Continuous time signal corresponding to each of the following Fourier Transforms
(a) $X(w)$ is given by the magnitude and phase plots of figure 4
(b) $X(w)= \begin{cases}w-1, & 1 \leq w<2 ; \\ \operatorname{sign}(w), & 2<|w| \leq 3 ; \\ w+1, & -2 \leq w<-1 ; \\ 0, & \text { else. }\end{cases}$

Figure 4: Problem 7
(c) $X(w)=e^{-2|w|}$
(d) $X(w)= \begin{cases}\cos (4 w), & |w|<\frac{\pi}{4} ; \\ 0, & \text { else. }\end{cases}$
(e) $X(w)=\frac{2 \sin w}{w(j w+2)}$.
(f) $X(w)=\frac{d}{d w}\left[4 \sin (4 w) \frac{\sin (2 w)}{w}\right]$

Problem 8

Compute the Fourier Transform for the following CT signals
(a) $x(t)= \begin{cases}1-t^{2}, & 0<t<1 ; \\ 0, & \text { else } .\end{cases}$
(b) $x(t)=e^{-3|t|} \sin 2 t$
(c) $x(t)=\left(\frac{\sin (t)}{\pi t}\right) * \frac{d}{d t}\left[\left(\frac{\sin (2 t)}{\pi}\right)\right]$
(d) $x(t)=t e^{-3|t-1|}$

Problem 9

Most of the modulation and demodulation schemes we discussed so far used multipliers as basic elements. Multipliers are often difficult to implement in practice. Therefore, many practical systems use a nonlinear element. In this problem we will be using a squaring device, as shown in figure 5 .

Figure 5: Problem 9
Assume $x(t)$ is a bandlimited signal such that $X(w)=0,|w|>w_{m}$.

1. Determine the bandpass filter properties $\left(w_{l}, w_{h}\right.$ and $\left.A\right)$ such that $y(t)$ is a modulated version of $x(t)$. That is, $y(t)=x(t) \cos w_{c} t$.
2. Specify the constraints, if any, on w_{c}, w_{m}.
