# AMERICAN UNIVERSITY OF BEIRUT Department of Electrical and Computer Engineering EECE340- Signals and Systems -Summer 2011 <br> Pset 2 Solutions 

## Prof. Karameh

## Problem 1

(a)
$s^{3}+s^{2}+s+k=0$
Routh Hurwitz =>
i. all coefficients are to be positive => K>0
ii. none of the coefficients are $0=>K=0$
iii. R-H array:

| $s^{3}$ | 1 | 1 |
| :--- | :--- | :--- |
| $s^{2}$ | 1 |  |
| $s^{2}$ | $1-K$ | 0 |
| $s^{0}$ | $K$ |  |
|  |  |  |

The number of roots in RHP is equal to number of sign changes in first column => Stability $=>$ in LHP $=>1-K>0=>K<1$ AND K>0 => $0<K<1$ Range of $K$ is $0<K<1$
(b)

$$
D(s)=a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}=0
$$

To be stable:
i. $a_{0}, a_{1}, a_{2}, a_{3}$ are all positive or all negative
ii. $a_{0}, a_{1}, a_{2}, a_{3}$ are all different than zero
iii. According to the R-H array:

No change of sign must occur in the first column =>
If all coefficients are positive then $a_{1} a_{2}-a_{3} a_{0}>0 \Rightarrow a_{1} a_{2}>a_{3} a_{0}$
If all coefficients are negative then $a_{1} a_{2}-a_{3} a_{0}>0 \Rightarrow a_{1} a_{2}>a_{3} a_{0}$ since $a_{2}$ is negative.
(C)

For part (a) $a_{0}=1, a_{1}=1, a_{2}=1, a_{3}=K$
$a_{0}, a_{1}, a_{2}, a_{3}$ are all positive and different than zero $a_{1} a_{2}>a_{3} a_{0}$ since $1>K$
$\Rightarrow$ Stable

## Problem 2

a) $\frac{d^{2} y}{d t^{2}}-4 y=10 i$
$\leftarrow \rightarrow$
$s^{2} Y(s)-s y(s)-y^{\prime}(s)-4 Y(s)=-10 I(s)$
$v(t)=2 \underline{d y(t)}$
$\leftarrow \rightarrow$
$\mathrm{V}(\mathrm{s})=2 \mathrm{~s} Y(\mathrm{~s})-2 \mathrm{y}(\mathrm{s})$

Then the system, in the s-domain looks like:
$\mathrm{P}(\mathrm{s})=\frac{-10}{\mathrm{~s}^{2}-4}=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{I}(\mathrm{s})}$


Stability:
$\rightarrow$ zeros ( $1+2 \mathrm{~s} . \mathrm{K} . \mathrm{P}(\mathrm{s})$ ) are in L.H.P
$\operatorname{zeros} \frac{\left(s^{2}-4-2 s K \times 10\right)}{s^{2}-4}=$ roots $\left(s^{2}-20 s K-4\right)$ are in LHP.

By R-H, a necessary condition for stability is that all coefficients of the equation are the same sign, but this is not satisfied in $\mathrm{s}^{2}-20 \mathrm{sK}-4$ (at least in power of $\mathrm{s}^{2}+\mathrm{s}^{\circ}$ )
$\rightarrow$ System is not stable for all K.
b)

$\mathrm{V}_{1}=\mathrm{V}_{2}$
$\mathrm{V}_{1}=\mathrm{V}_{2}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{Vc}=\frac{1}{3} \quad \mathrm{Vc}(\mathrm{s}) \quad\left(\mathrm{R}_{1}=1 ; \mathrm{R}_{2}=2\right)$
$\mathrm{V}-\mathrm{V}_{1}=\frac{\mathrm{R}_{1} \cdot(\mathrm{Cs})^{-1}}{\mathrm{R}_{1}+(\mathrm{Cs})^{-1}} \times \mathrm{I}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1} \mathrm{Cs}+1} \times \mathrm{I}=\frac{1}{\mathrm{~s}+1} \times \mathrm{I} . \quad(\mathrm{R} 1=1 ; \mathrm{C}=1)$
$\mathrm{I}=\frac{\mathrm{V}-\mathrm{Vc}}{(\mathrm{s}+1)^{-1}+\mathrm{s}^{-1}}=\frac{\mathrm{s}(\mathrm{s}+1)}{2 \mathrm{~s}+1}(\mathrm{~V}-\mathrm{Vc}) ;$

$$
\begin{aligned}
& \mathrm{I}=\frac{\mathrm{V}-\mathrm{Vc}}{\mathrm{~s}^{-1}}=\frac{-2 \mathrm{~s}}{3} \mathrm{Vc} \\
& \frac{\mathrm{~s}(\mathrm{~s}+1)}{2 \mathrm{~s}+1} \mathrm{~V}=\left[\frac{\mathrm{s}(\mathrm{~s}+1)}{2 \mathrm{~s}+1}-\frac{2 \mathrm{~s}}{3}\right] \mathrm{Vc}
\end{aligned}
$$

$$
\rightarrow \frac{\mathrm{Vc}(\mathrm{~s})}{\mathrm{V}(\mathrm{~s})}=\frac{-3(\mathrm{~s}+1)}{\mathrm{s}-1}
$$

c)

$$
\left.\begin{array}{rl} 
& \mathrm{H}(\mathrm{~s})=\frac{\mathrm{Y}(\mathrm{~s})}{\mathrm{X}(\mathrm{~s})}=\frac{\mathrm{K} \mathrm{P}(\mathrm{~s})}{1+2 . \mathrm{s} \cdot \mathrm{~K} \cdot \mathrm{C}(\mathrm{~s}) \mathrm{P}(\mathrm{~s})} \\
\Rightarrow & \mathrm{H}(\mathrm{~s})= \\
\frac{\frac{-10 \mathrm{~K}}{\mathrm{~s}^{2}-4}}{1+\frac{2 . \operatorname{s.k} \cdot 3(\mathrm{~s}+1)}{\mathrm{s}-1}} \frac{\times 10}{\mathrm{~s}^{2}-4}
\end{array}\right]
$$



$$
\mathrm{H}(\mathrm{~s})=\frac{-10 \mathrm{~K}(\mathrm{~s}-1)}{\mathrm{s}^{3}+(60 \mathrm{~K}-1) \mathrm{s}^{2}+(60 \mathrm{~K}-4) \mathrm{s}+4}
$$

$$
C(s)=\frac{-3(s+1)}{s-1}
$$

$$
\mathrm{P}(\mathrm{~s})=\frac{-10}{\mathrm{~s}^{2}-4}
$$

d) roots $\left(\mathrm{s}^{3}+(60 \mathrm{~K}-1) \mathrm{s}^{2}+(60 \mathrm{~K}-4) \mathrm{s}+4=0\right)$ are in LHP.

For system to be stable, use R-H criterion:

| $\mathrm{s}^{3}$ | 1 | $60 \mathrm{~K}-4$ |
| :--- | :---: | :---: |
| $\mathrm{~s}^{2}$ | $60 \mathrm{~K}-1$ | 4 |
| $\mathrm{~s}^{1}$ | $\frac{(60 \mathrm{~K}-1)(60 \mathrm{~K}-4)-4}{60 \mathrm{~K}-1}$ | 0 |
| $\mathrm{~s}^{\circ}$ | 4 |  |

and

$$
\frac{3600 \mathrm{~K}^{2}-300 \mathrm{~K}}{60 \mathrm{~K}-1}>0
$$



Problem 3

$$
a p(s)=\frac{8}{5} \cdot \frac{1}{s-3}=\frac{8}{s(5-3)}
$$

$p(\$)$ is unstable Since it has a pole C $s=3$ ) in The RHS of the $s$ plane
b. $k(s)=k_{0}$

$$
\therefore \frac{h\left(s^{\prime}\right)}{U(S)}=\frac{8}{s^{\prime}\left(s^{\prime}-3\right)+8 k_{0}}=\frac{8}{s^{\prime 2}-3 s+8 k_{0}}
$$

Taking the equation $S^{2}-3 S+8 k 0$ and finding its roots we get:

$$
S_{1,2}=3 \pm \sqrt{9-32 k_{0}}
$$

we find the $3+\sqrt{9-32 k o}$ is + the far all values of $k o$, ar always hame a pale in the RHS' of the spillane for any value of ko, then the system is unstable

$$
\begin{aligned}
c(s) & =k_{0}+k_{1}(\$) \\
\therefore \frac{V}{U} & =\frac{8}{s(s-3)+8\left(k_{0}+k_{8} \$\right)}=\frac{8}{s^{2}-3 s+8 k_{0}+8 k_{1}^{\prime}} \\
& =\frac{8}{s^{2}+\left(8 k_{1}-3\right) s^{\prime}+8 k_{0}}
\end{aligned}
$$

Using Ruth Harwitz criterion

| $s^{2}$ | 1 | $8 k u$ |
| :---: | :---: | :---: |
| $s^{1}$ | $8 k_{1}$ | 3 |
| $s_{0}$ | $8 k_{0}$ | 0 |



Problem 4
a-1: Write down the differential equations which describe the dynamics of his weight increase $x_{1}$ and his exercise ability $x_{2}$.
a-2: Draw a block diagram representation of the ordinary differential equation governing $x_{1}$ with a minimum number of integrators.

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}-x_{2} \\
\dot{x}_{2} & =-2 x_{1} \\
\ddot{x}_{1} & =\dot{x}_{1}-\dot{x}_{2}=\dot{x}_{1}+2 x_{1} \\
& \Rightarrow \ddot{x}_{1}-\dot{x}_{1}-2 x_{1}=0 \\
& \Rightarrow x_{1}=\int x_{1}+\iint 2 x_{1}
\end{aligned}
$$


b) (5\%) Find the weight of Homer for all time as his exercise program progresses. Assume that his weight initially was $x_{1}(0)=120 \mathrm{Kg}$ and the rate $x^{\prime}(0)=0$. Is there a problem with this exercise plan?

$$
\begin{aligned}
& x_{1}-2 x_{1}-\dot{x}_{1}=0 \\
& x_{1}(2)=120 \\
& x_{1}^{\prime}(0)=0 \\
& y_{\text {han }}(T)=A C^{T} \\
& \Rightarrow s^{2}-s-2 \Rightarrow \quad \Rightarrow(s-2)(s+1)=0 \\
& s=2,-1 \\
& \Rightarrow x_{1}(\tau)=A e^{2 \tau}+B e^{-\tau} \quad \tau \geqslant 0 \\
& A+B=120 \quad \Rightarrow 3 A=120 \\
& 2 A-B=0 \quad A=40^{\circ}, B=80 \\
& \therefore \quad x, 15)=40 e^{2 \tau}+80 e^{-\tau} \quad \tau \geqslant 0 \\
& e^{2 r} \text { is inclesest } 4 . \pi \text { time }
\end{aligned}
$$

So Homer might die!!
c) (5\%) Lisa Simpson observed how her father's weight is progressing and decided to help him. In addition to the earlier exercise dynamics ( $B$ above), she noticed that the rate of his exercise ability $x_{2}^{\prime}$ will increase in direct proportion to its current state $x_{2}$. Therefore, she decided to give him some reward to boost this ability (such as watching TV at the end of each exercise). In this case, the rate $x_{2}^{\prime}$ will be increasing at a steady constant rate R . That is,

$$
x_{2}^{\prime}=-2 x_{1}+k_{2} x_{2}+k_{1} x_{1}+R u(t)
$$

Could this scheme work? If so, find the constants $R, k_{1}$ and $k_{2}$ such that his weight stabilizes at half its original, that is, $x_{1}=\frac{1}{2}\left(x_{1}(0)\right)=60 \mathrm{Kg}$.

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}-x_{2} \\
& x_{2}=-2 x_{1}+k_{1} x_{1}+k_{2} x_{2}+k_{4}(\pi) \\
& \Rightarrow \ddot{x}_{1}=\dot{x}_{1}-\dot{x}_{2}=\dot{x}_{1}+2 x_{1}-k_{1} x_{1}-k_{2} x_{2}-R u(r) \\
& =x^{\prime}+\left(2-k_{1}\right) x_{1}-k_{2}\left(x_{1}-\dot{x}_{1}\right)-R_{u} i \overline{)} \\
& \ddot{x}_{1}=\left(1+k_{2}\right) \dot{x}_{1}+\left(2-k_{1}-k_{2}\right) x_{1}-R_{4}(T) \\
& \left.\therefore \quad \ddot{x}_{1}-\left(1+k_{2}\right) \dot{x}_{1}+\left(-2+k_{1}+k_{2}\right) x_{1}=-2,1+1\right) \\
& \text { TAKING LAPLACE: } \\
& s^{2} X_{1}(s)-s x(0)-x^{\prime}(2)-\left(1+k_{2}\right) s X_{1}(s)-\left(1+k_{2}\right) x_{1}(s) \\
& +\left(k_{1}+\left(c_{2}-2\right) x_{1} 15\right)=\frac{-2}{s} \\
& \therefore X_{1}(s)=\frac{-R}{s\left(s^{2}-\left(1+k_{2}\right) \gamma+\left(k_{1}+k_{n}-2\right)\right.}+\frac{\left(\left(1+k_{2}\right)+s\right)_{r}(s)}{s^{2}-\left(1+k_{n}\right) s+\left(k_{1}+k_{2}-2\right)} \\
& \text { for stability: } 1+k_{2}<0 \Rightarrow k_{2} \angle-1 \\
& k_{1}+F_{2}-2 \nless 0 \Rightarrow K_{1}>2-k_{2} \\
& \text { Choose } k_{2}=-3 \Rightarrow k_{1}>5_{10} \text { choose } k_{1}=6 \\
& x_{1}(s)=\frac{-1^{2}}{s\left(s^{2}+2 s+1\right)}+\frac{z \Sigma \Omega}{\rightarrow 0} \quad \begin{array}{l}
x_{1}(t) \\
t \rightarrow \infty
\end{array} \lim _{s \rightarrow 0} s x_{1}(s)=-2 \\
& \left.x_{1}(r)\right|_{t, 7}=\frac{-R}{k_{1}+k_{2}-2} \quad \Rightarrow \rightarrow \infty=-60
\end{aligned}
$$

Yuviatios

$$
y[n)+\frac{2}{9} y[n-2]-y[n-1]=x(r)+2 x(n-1)
$$

stant with non-knunical firm (Dirceí form 1)


$$
\begin{aligned}
& y(z)\left(1+\frac{2}{9} r^{-1}-1 z^{-1}\right)=\left(1-2 z^{-}\right) X(z) \\
& \Rightarrow \frac{y(z)}{X(x)}=\frac{1-27^{-1}}{1-7^{-1}+\frac{2}{3}}=\frac{1-27^{-1}}{\left(1-\frac{2 i}{3}\right)\left(1-\frac{1}{3} 7^{-1}\right)}
\end{aligned}
$$

$$
H(x)=\frac{1-2 x^{-1}}{\left(1-\frac{2}{3} x^{*}\right)\left(1-\frac{1}{3} x^{-}\right)}
$$

:1 syrtem is caus2l $\Rightarrow$ it is stable. (poles insile dise)
(b)

$$
x[n)=4(n)-u(n-2)=\sigma(n)+\delta(n-1)
$$

$$
\text { läs find } h(x) \leftrightarrows H(z)=\frac{1-2 z^{-1}}{\left(1-\frac{1}{3} z^{-}\right)\left(1-\frac{2}{3} 7^{-1}\right)}
$$

Problem 6
(a) $y[n]-\alpha y[n-1]=2 x[n]$

$$
\begin{aligned}
r-\alpha & =0 \\
y^{(t)}[n] & =c_{1} \alpha^{n}
\end{aligned}
$$

(d) $y[n]+y[n-1]+\frac{1}{4} y[n-2]=x[n]+2 x[n-1]$

$$
\begin{aligned}
r^{2}+r+\frac{1}{4} & =0 \\
r & =-\frac{1}{2},-\frac{1}{2} \\
y^{(h)}[n] & =c_{1}\left(-\frac{1}{2}\right)^{n}+c_{2} n\left(-\frac{1}{2}\right)^{n}
\end{aligned}
$$

$$
\begin{aligned}
& H(x)=\frac{A}{1-\frac{1}{3} 7^{-1}}+\frac{B}{1-\frac{2}{3} 7^{-1}} \\
& H(x)=\frac{5}{1-\frac{1}{3} x^{-1}}-\frac{4}{1-\frac{2}{3}+-1} \\
& A=\frac{1+6}{1=2}=5 ; \quad B=\frac{1-3}{1-\frac{1}{2}}=-4 \\
& \left.h(r)=5\left(\frac{1}{3}\right)^{n} n(r)-4\left(\frac{2}{3}\right)^{n} n(n)\right) \\
& \therefore y(n)=5\binom{1}{3}^{n} n(n)-4\binom{2}{3}^{n} n(n)+5\left(\frac{1}{3}\right)^{n-1} 4(n-1)-4\left(\frac{2}{3}\right)^{n-1} n(n-1) \\
& x(n)=(-2)^{n} \quad \forall n \\
& y(n)=x(n) * h(n)=\sum_{k=-\infty}^{\infty} h[k] x[n-k)=\sum_{-\infty}^{\infty} h(r](-2)^{n-k} \\
& =(-2)^{n} \sum_{-\infty}^{2} h(F)(-2)^{-k} \\
& =(-2)^{n} H(-2) \\
& =(-2)^{n}\left[\frac{1+1}{\left(1+\frac{1}{6}\right)\left(1+\frac{1}{3}\right)}\right]=0 \\
& (-2)^{n}\left(\frac{2+6+3}{7+4}\right)=\left(\frac{9}{7}\right)(-2)^{n}
\end{aligned}
$$

## Problem7

(a) $y[n]-\frac{2}{5} y[n-1]=2 x[n]$ (i) $x[n]=2 u[n]$

$$
\begin{gathered}
y^{(p)}[n]=k u[n] \\
k-\frac{2}{5} k=4 \\
k=\frac{20}{3} \\
y^{(p)}[n]=\frac{20}{3} u[n]
\end{gathered}
$$

(ii) $x[n]=-\left(\frac{1}{2}\right)^{n} u[n]$

$$
\begin{aligned}
y^{(p)}[n] & =k\left(\frac{1}{2}\right)^{n} u[n] \\
k\left(\frac{1}{2}\right)^{n}-\frac{2}{5}\left(\frac{1}{2}\right)^{n-1} k & =-2\left(\frac{1}{2}\right)^{n} \\
k & =-10 \\
y^{(p)}[n] & =-10\left(\frac{1}{2}\right)^{n} u[n]
\end{aligned}
$$

