
CHAPTER 14

The Discrete and Fast Fourier 
Transforms



Introduction

It would be hard to exaggerate the importance of the 
Discrete Fourier Transform (DFT) in digital signal 
processing. When implemented using a Fast Fourier 
Transform (FFT) algorithm, the DFT offers rapid 
frequency-domain analysis and processing of digital 
signals, and investigation of LTI systems. 

We have already described two Fourier representations 
for digital signals in Chapter 4 
1. DTFS:  Applicable to periodic signals. 
2. DTFT: Applicable to aperiodic signals and LTI 

processors, and giving rise to continuous functions of 
the variable.



Introduction

The DFT (Discrete Fourier Transform) may be regarded 
as a third Fourier representation, applicable to non 
periodic digital signals of finite length. It is closely related
to the discrete Fourier Series. 

We have two main aims in this chapter, First, we wish to 
explain the basis of the DFT and its relationship with 
other Fourier representations.  We will then discuss the 
computational problems of implementing the DFT directly 
and how to speed up the process using Fast Fourier 
Transforms (FFT) algorithms. 



Basis of the DFT

Truly periodic signals are rarely encountered in practical 
DSP.  Aperiodic signals and data with a finite number of 
nonzero sample values are far more common. The 
Discrete Fourier Transform (DFT) of such a signal 
system; x[n], defined over the range 0≤n≤(N-1) is given 
by:
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Basis of the DFT

The DFT of x[n]

Can also be written as

where
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Basis of the DFT

Note that the spectral coefficients X[k] are evaluated for 
0≤k≤(N-1).

.



Inverse DFT or IDFT

The inverse DFT, or IDFT, which allows us to recover the 
signal from its spectrum, is given by 

where the values of x[n] are evaluated for 0≤n≤(N-1).
If we use the DFT formula to calculate additional values of X[k], 
outside the values for K>(N-1), we find that they form a periodic 
spectral sequence.  Likewise, using the IFDT formula to calculate 
additional values of x[n] for n>(N-1)  yields a periodic version of the 
signal. 
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Basis of the DFT

We therefore see that the DFT and IDFT both 
represent a finite-length sequence as one period of a 
periodic sequence. In effect the DFT considers an 
aperiodic signal x[n] to be periodic for the purposes of 
computation. 

Note that the only difference between the DFT and the 
IDFT is the scaling factor of (1/N), and a sign change 
in the exponent. Therefore, if we have an algorithm for 
computing the DFT, it is a simple matter to modify it to 
compute the IDFT. This is a direct consequence of the 
symmetry between time and frequency domains 



Properties of the DFT

1. Periodicity
x[n] = x[n+N] for all n 

and 
X[k] = X[k+N] for all k 

The property can also be interpreted by 
evaluating the indices modulo-N. 



Properties of the DFT

2. Linearity 
If

And

Then,
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Properties of the DFT

3. Time Shifting
If

Then
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Properties of the DFT

4. Circular Convolution
What happens when we multiply two DFT's together Y[k]=X[k]H[k], 
where X[k] is the DFT of x[n] and H[k] is the DFT of h[n] when  
0≤k≤(N-1) ? 

Answer
Using the IDFT synthesis formula for y[n], we obtain
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Circular convolution

Using the fact

We obtain

∑
−

=

π

=
1N

0k

kn
N
2j

e]k[H]k[X
N
1]n[y

∑
−

=

π
−

=
1N

0m

km
N
2j

e]m[h]k[H

∑ ∑
−

=

π−

=

π
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

1N

0k

kn
N
2j1N

0m

km
N
2j

ee]m[h]k[X
N
1]n[y

∑∑
−

=

−
π−

=
=

1N

0k

)mn(k
N
2j1N

0m
e]k[X

N
1]m[h]n[y



Circular convolution

where we can reduce the second summation into 

Then

The above is called circular convolution, and it is denoted by:
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Steps for Circular convolution 
computation

Steps for cyclic convolution are the same as the usual convolution, 

except all index calculations are done "mod N" = "on the wheel" .
Step 1: construct two circles as shown below



Steps for Circular convolution 
computation

Step 2: Divide each circle into N equally spaced arcs



Steps for Circular convolution 
computation

Step 3: Place the first sequence on the outer circle in the 
contour-clockwise direction and the other sequence on the 
inner circle in the clockwise direction (inverted). 

for k=0; multiply the overlapping numbers and add.  

X[0]

X[1]

X[2]

X[3]

h[0]

h[3]

h[2]

h[1]



Steps for Circular convolution 
computation

Step 4:
for k=1, rotate the outer circle clockwise one unit. Again, multiply the 
overlapping numbers and add.

Step5:
Repeat the same steps until k=N-1



Properties of the DFT

5. Modulation
If

Then
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THE FAST FOURIER TRANSFORM (FFT)
BASIS OF THE FFT

Highly efficient algorithms for computing the DFT were first 
developed in the 1960s. Collectively, known as Fast Fourier 
Transforms (FFTs), they all rely upon the fact that the standard DFT 
involves redundant calculation. The DFT of an N-length signal 
is given by:

where Wn=exp(-j2π/N) and X[k] are evaluated for 0≤k≤(N-1). It turns 
out that the same values in the sum are calculated many times as the 
computation proceeds - particularly if the transform is lengthy. This is 
because Wn is a periodic function with a limited number of distinct 
values. The same is true of the IDFT. It is the aim of FFT algorithms to 
eliminate the redundancy
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