
CHAPTER 14

The Discrete and Fast Fourier
Transforms

Introduction

It would be hard to exaggerate the importance of the
Discrete Fourier Transform (DFT) in digital signal
processing. When implemented using a Fast Fourier
Transform (FFT) algorithm, the DFT offers rapid
frequency-domain analysis and processing of digital
signals, and investigation of LTI systems.

We have already described two Fourier representations
for digital signals in Chapter 4
1. DTFS: Applicable to periodic signals.
2. DTFT: Applicable to aperiodic signals and LTI

processors, and giving rise to continuous functions of
the variable.

Introduction

The DFT (Discrete Fourier Transform) may be regarded
as a third Fourier representation, applicable to non
periodic digital signals of finite length. It is closely related
to the discrete Fourier Series.

We have two main aims in this chapter, First, we wish to
explain the basis of the DFT and its relationship with
other Fourier representations. We will then discuss the
computational problems of implementing the DFT directly
and how to speed up the process using Fast Fourier
Transforms (FFT) algorithms.

Basis of the DFT

Truly periodic signals are rarely encountered in practical
DSP. Aperiodic signals and data with a finite number of
nonzero sample values are far more common. The
Discrete Fourier Transform (DFT) of such a signal
system; x[n], defined over the range 0≤n≤(N-1) is given
by:

∑
−

=
π−=

1N

0n
)N/kn2jexp(]n[x]k[X

Basis of the DFT

The DFT of x[n]

Can also be written as

where

∑
−

=
π−=

1N

0n
)N/kn2jexp(]n[x]k[X

∑
−

=
=

1N

0n

kn
NW]n[x]k[X

)N/2jexp(WN π−=

Basis of the DFT

Note that the spectral coefficients X[k] are evaluated for
0≤k≤(N-1).

.

Inverse DFT or IDFT

The inverse DFT, or IDFT, which allows us to recover the
signal from its spectrum, is given by

where the values of x[n] are evaluated for 0≤n≤(N-1).
If we use the DFT formula to calculate additional values of X[k],
outside the values for K>(N-1), we find that they form a periodic
spectral sequence. Likewise, using the IFDT formula to calculate
additional values of x[n] for n>(N-1) yields a periodic version of the
signal.

∑
−

=

−=
1N

0k

kn
NW]k[X

N
1]n[x

Basis of the DFT

We therefore see that the DFT and IDFT both
represent a finite-length sequence as one period of a
periodic sequence. In effect the DFT considers an
aperiodic signal x[n] to be periodic for the purposes of
computation.

Note that the only difference between the DFT and the
IDFT is the scaling factor of (1/N), and a sign change
in the exponent. Therefore, if we have an algorithm for
computing the DFT, it is a simple matter to modify it to
compute the IDFT. This is a direct consequence of the
symmetry between time and frequency domains

Properties of the DFT

1. Periodicity
x[n] = x[n+N] for all n

and
X[k] = X[k+N] for all k

The property can also be interpreted by
evaluating the indices modulo-N.

Properties of the DFT

2. Linearity
If

And

Then,

]k[X]n[x
DFT
←→

]k[Y]n[y
DFT
←→

]k[bY]k[aX]n[by]n[ax
DFT

+←→+

Properties of the DFT

3. Time Shifting
If

Then

]k[X]n[x
DFT
←→

0kn

N

)N/0kn2j(
DFT

0 W]k[Xe]k[X]nn[x =←→− −

Properties of the DFT

4. Circular Convolution
What happens when we multiply two DFT's together Y[k]=X[k]H[k],
where X[k] is the DFT of x[n] and H[k] is the DFT of h[n] when
0≤k≤(N-1) ?

Answer
Using the IDFT synthesis formula for y[n], we obtain

∑
−

=

π

=
1N

0k

kn
N
2j

e]k[H]k[X
N
1]n[y

Circular convolution

Using the fact

We obtain

∑
−

=

π

=
1N

0k

kn
N
2j

e]k[H]k[X
N
1]n[y

∑
−

=

π
−

=
1N

0m

km
N
2j

e]m[h]k[H

∑ ∑
−

=

π−

=

π
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

1N

0k

kn
N
2j1N

0m

km
N
2j

ee]m[h]k[X
N
1]n[y

∑∑
−

=

−
π−

=
=

1N

0k

)mn(k
N
2j1N

0m
e]k[X

N
1]m[h]n[y

Circular convolution

where we can reduce the second summation into

Then

The above is called circular convolution, and it is denoted by:

∑∑
−

=

−
π−

=
=

1N

0k

)mn(k
N
2j1N

0m
e]k[X

N
1]m[h]n[y

[] ∑
−

=

−
π

=−
1N

0k

)mn(k
N
2j

Nmod e]k[X
N
1)mn(x

[]N

N

m
mnxmhny mod

1

0
)(][][−=∑

−

=

]n[h]n[x]n[y ⊕=

Steps for Circular convolution
computation

Steps for cyclic convolution are the same as the usual convolution,

except all index calculations are done "mod N" = "on the wheel" .
Step 1: construct two circles as shown below

Steps for Circular convolution
computation

Step 2: Divide each circle into N equally spaced arcs

Steps for Circular convolution
computation

Step 3: Place the first sequence on the outer circle in the
contour-clockwise direction and the other sequence on the
inner circle in the clockwise direction (inverted).

for k=0; multiply the overlapping numbers and add.

X[0]

X[1]

X[2]

X[3]

h[0]

h[3]

h[2]

h[1]

Steps for Circular convolution
computation

Step 4:
for k=1, rotate the outer circle clockwise one unit. Again, multiply the
overlapping numbers and add.

Step5:
Repeat the same steps until k=N-1

Properties of the DFT

5. Modulation
If

Then

]k[X]n[x
DFT
←→

]k[Y]n[y
DFT
←→

∑
−

=
−⎯→←

1N

0m
]mk[Y]m[X

N
1]n[y]n[x

THE FAST FOURIER TRANSFORM (FFT)
BASIS OF THE FFT

Highly efficient algorithms for computing the DFT were first
developed in the 1960s. Collectively, known as Fast Fourier
Transforms (FFTs), they all rely upon the fact that the standard DFT
involves redundant calculation. The DFT of an N-length signal
is given by:

where Wn=exp(-j2π/N) and X[k] are evaluated for 0≤k≤(N-1). It turns
out that the same values in the sum are calculated many times as the
computation proceeds - particularly if the transform is lengthy. This is
because Wn is a periodic function with a limited number of distinct
values. The same is true of the IDFT. It is the aim of FFT algorithms to
eliminate the redundancy

∑
−

=
π−=

1N

0n
)N/kn2jexp(]n[x]k[X

∑
−

=
=

1N

0n

kn
NW]n[x]k[X

