
Chapter 10

Discrete-Time Signals and 
Systems



Introduction

A discrete-time signal x(nTs) is a signal that is 
only defined at discrete instants of time.   A 
discrete-time signal is usually derived from a 
continuous time signal through sampling and  
Ts is called the sampling period.  Therefore, 
sampling the signal x(t) at time  Ts yields a 
discrete-time signal x(nTs).   For convenience 
of presentation, we use

x[n] = x(nTs) for n = 0, ± 1, ±2, ±3, ……



Properties of a DT signal x[n]

Periodic signal
x[n] is a periodic signal if  x[n] = x [n + N]
where N is a positive integer.  The smallest value 
of N that satisfies the above equation is called 
the fundamental period of the discrete-time 
signal x[n]. 

The fundamental angular frequency of x[n] 
is:Ω=2π/N which is expressed in radians.



Properties of a DT signal x[n]

Periodic signal:  Example

Periodic signal with a period of N=6



Properties of a DT signal x[n]

Periodic signal:  Examples
For each of the following signals determine 
whether it is periodic or not

x[n]=cos(2n), 
Not Periodic
x[n]=cos(2πn), 
Periodic with N=1
x[n]=(-1)n, 
Periodic with N=2
x[n]=(-1)n2, 
Periodic with N=2



Properties of a DT signal x[n]

Energy and Power signals
The energy of a discrete-time signal x[n] is defined as:

and its averaged power is defined by:

Here again, the average power of a periodic signal is:
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Properties of a DT signal x[n]

Energy and Power signals
A discrete-time signal x[n] is said to be an 
energy signal if the total energy of this signal is 
finite; that is 0<E<∞.

A discrete-time signal x[n] is said to be a 
power signal if the total power of this signal is 
finite; that is 0<P<∞.

Please note that all periodic signals and 
random signals are power signals.



Operations on Discrete-time signals

1. Multiplication by a constant c:   y[n] = c x[n]

2. Addition:   z[n] = x[n] + y[n]

3. Multiplication:  Z[n] = x[n] y[n]

4. Shifting:  y[n]  = x[n-m]
where m must be a positive or negative 
integer. 



Operations on Discrete-time signals

Two discrete-time signals x[n] and y[n] defined as:

Determine:
1. z[n]=x[2n+3]
2. z[n]=x[n]+2y[n]
3. z[n]=x[n]y[n]
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Special discrete-time signals

1. Step function

2. Impulse function

3. Ramp function
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Discrete time systems

A discrete-time system is viewed as an 
interconnection of operations that 
transforms an input signal into an output 
signal.  
In general, the input-output relation of a 
discrete time system is described by:
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Discrete time systems: Example
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Properties of a discrete-time system

Stable system
A discrete-time system represented by:

is said to be stable iff
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Properties of a discrete-time system

Causality
A discrete-time system is causal if the present 
value of the output signal depends only on the 
present or past values of the input signal

Examples
y[n] = x[n] + x[n-1] + x[n-4]   is a causal system
y[n] = x[n+1] + x[n]+x[n-3]  is not a causal 
system.



Properties of a discrete-time system

Linearity
A discrete-time system is linear if the two properties 
apply: Superposition and homogeneity.

Example:
y[n] = n x[n]



Properties of a discrete-time system

Time-invariant 
A shift in the input corresponds to the same shift 
in the output.

Example
Y[n]=nx[n]



Impulse response of a discrete-time system

The impulse response h[n] of a discrete-
time system is easily obtained by setting 
the input signal to the impulse δ[n] .



Input-output relation of an LTI system: 
The convolution sum

Consider a LTI discrete-time system with input x[n] and 
impulse response h[n].

The output of the signal is written as the convolution sum

The sum above is termed the convolution sum and is 
denoted by the symbol *; that is, 

y[n]  = x[n]*h[n]

h[n]
x[n]

y[n]
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Example

Consider the discrete-time LTI system model 
representing a two-path propagation channel.  If the 
strength of the indirect path is a = 1/2, then 

determine the output of this system if the input is:
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Convolution Sum Evaluation Procedure

1.The first step is to determine the impulse response h[n]

2. Write x[n] as the weight sum of time shifted impulses

3.  Compute h[n]*x[n].
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First Method

In this method, the basic definition of the convolution of 
two finite causal sequences (The sequence has zero 
value for negative values of n) is used with the fact that 
the convolution of an M-point sequence x[n] and an N-
point sequence h[n] is an (M+N-1)-point sequence y[n].  
In a mathematical form, 
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Second Method

In this method, the convolution sum y[n] of the two finite 
sequences h[n] and x[n] is given by:

y[n]= h[0]x[n]+h[1]x[n-1]+... +h[k]x[n-k]+...+h[m]x[n-m]

m is the highest index for which h[m] is different than 
zero. 



Third Method

This method uses the approach discussed in:

J.W. Pierre, “A Novel Method for Calculating the 
Convolution Sum of Two Finite Length Sequences”, 
IEEE Transactions on Education, Vol. 39, No.1, pp.77-
80, February 1996.



Third Method

This procedure is similar to the multiplication of two 
decimal numbers which makes this method attractive, 
easy to learn, and simple to implement. To obtain this 
table, the following steps are done:

n 0 1 2 3 4 5 k h[k]
x[n] 2 4 -2 0 1
x[n-1] 2 4 -2 1 0.5
h[0]x[n] 2 4 -2
h[1]x[n-1] 0 1 2 -1
y[n] 2 5 0 -1



Example

The output y[n] of the four-point moving-average system is related 
to the input x[n] according to the formula 

→

Determine the output y[n] when the input is the rectangular pulse 
defined as 

x[n] = u[n] - u[n - 10] 
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 k h[k]
x[n] 1 1 1 1 1 1 1 1 1 1 0 ¼
x[n-1] 1 1 1 1 1 1 1 1 1 1 1 ¼
x[n-2] 1 1 1 1 1 1 1 1 1 1 2 ¼
x[n-3] 1 1 1 1 1 1 1 1 1 1 3 ¼

h[0]x[n] ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

h[1]x[n-1] ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

h[2]x[n-2] ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

h[3]x[n-3] ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

y[n] ¼ ½ ¾ 1 1 1 1 1 1 1 3/4 ½ ¼



Example

In summary, 
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Relations between LTI System 
Properties and the Impulse Response

The impulse response completely 
characterizes the input-output behavior 
of an LTI system. Hence, properties of 
the system, such as memory, causality, 
and stability, are related to the system's 
impulse response. In this section, we 
explore the relationships involved. 



Memoryless LTI systems

The output of a memoryless LTI system depends only on the 
current input. How this property is related to h[n]?
For an LTI system, 

y[n] = h[n] * x[n] = 

For this system to be memoryless, y[n] must depend only on x[n] 
and therefore cannot depend on x[n - k] for k#0. Hence, all other 
terms must be zero except h[0]x[n]. 

This condition implies that h[k] = 0 for k#0; thus, a discrete-time 
LTI system is memoryless if and only if 

where c is an arbitrary constant.  
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Causal LTI Systems

The output of a causal LTI system depends only on past or 
present values of the input. Again, we write the convolution sum
as:
y[n] = ... + h[-2]x[n + 2] + h[-l]x[n + 1] + h[O]x[n] + h[l]x[n - 1]    

+ h[2]x[n - 2] +…. 

We see that past and present values of the input, x[ n], x[n - 1], 
x[n - 2],..., are associated with indices k≥ 0 in the impulse 
response h[ k], while future values of the Input, x[ n + 1], x[ n + 2], 
. . ., are associated with indices k < 0. 

In order, then, for y[ n] to depend only on past or present values 
of the input, we require that h[k] = 0 for k < 0.



Stable LTI Systems

An LTI DT system is stable iff the output is bounded 
for every bounded input. 
A bounded output means:

When 

If we assume that the output is bounded for every 
bounded input, then
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Example

A first-order DT system is described by the difference 
equation y[n]=ρy[n-1]+x[n]. and has the impulse 
response h[n]=ρnu[n].

1. Is this system causal? 
Yes

2. Is the system memoryless?  
No

3. Is it BIBO stable? 

Yes if |ρ|<1.



Problem

For each of the following impulse responses, determine 
whether the corresponding system is (i) memoryless, (ii) 
causal, and (iii) stable. Justify your answers. 

(a) h[n] = 2nu[-n] 

not memoryless, not causal, stable
(b) h[n] =e2n u[n - 1] 
not memoryless, causal, not stable
(c) h[n] = (0.5)n u[n]   
not memoryless, causal, stable



Step-response

Step input signals are often used to characterize the response of 
an LTI system to sudden changes in the input. The step response 
is defined as the output due to a unit step input signal. Let h[ n] 
be the impulse response of a discrete-time LTI system, and 
denote the step response as s[ n]. We thus write 

That is, the step response is the running sum of the impulse 
response. Note that we may invert these relationships to express
the impulse response in terms of the step response as 

h[n] = s[n] - s[n - 1] 
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EXAMPLE

Find the step response of the first-order recursive system 
with impulse response

assuming that |ρ| < 1.

Answer:
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Difference Equation Representations of 
LTI Systems

Linear constant-coefficient difference equations 
provide another representation for the input-output 
characteristics of LTI systems. Difference equations 
are used to represent discrete-time systems, while 
differential equations represent continuous-time 
systems.  A linear constant-coefficient difference 
equation has a similar form of that of continuous 
system, with the derivatives replaced by delayed 
values of the input x[ n ] and output y[n]:
Examples:

An example of a second-order difference equation is 
y[n] + y[n - 1] + 4y[n - 2] = x[n] + 2x[n - 1]



Solving Difference Equations

This is best done with the use of the z-
transform discussed later.



Block Diagram Representations

In this section, we examine block diagram representations of LTI
systems described by difference equations. A block diagram is an 
interconnection of elementary operations that act on the input 
signal. The block diagram is a more detailed representation of a
system than the impulse response or difference equation, on 
descriptions, since it describes how the system's internal 
computations or operations are ordered. 

Block diagram representations consist of an interconnection of 
three elementary operations on signals: 

1. Scalar multiplication: y[n] = cx[n], where c is a scalar. 
2.  Addition:  y[n] = x[n] + w[n]. 
3.  Time shift for that discrete-time LTI systems: y[n] = x[n - 1]. 



Direct Form I: Example

1. Let us rewrite the above equation in a manner similar to 
that of the continuous system

2. The above equation can be written in the following form

with
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]2n[xb]1n[xb]n[xb]n[w 210 −+−+=



Direct Form I: Example

3. Draw the block diagram of the two quantities then 
connect as shown below



Direct Form II: Example

We may view Direct Form I as a 
cascade the of two systems: one 
with input x[n] and output w[n] 
and a second with input w[ n] 
and output y[n]. Since these are 
LTI systems, we may 
interchange their order without 
changing the input-output 

behavior of the cascade.



State Variable representation of 
Discrete LTI Systems

We shall develop the general state-
variable description by starting with the 
direct form II implementation of a 
second-order LTI system.  Procedure is 
almost the same as for the case of a 
continuous system.  The output of each 
time delay is denoted by a state q[n] as 
shown in the next example



Example



Example: Matrix Format
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