## Chapter 3

Linear Time-Invariant Systems

## Chapter Outlines

- In this chapter, we will discuss linear time-invariant (LTI) systems. These are systems that are both linear and time-invariant. We will see that an LTI system has an input-output relationship described by a convolution.


## LTI Systems

- A fundamental property of a linear time-invariant system is that the input $f(t)$ and the output $g(t)$ are related by linear differential equation with constant coefficients

$$
a_{0} g(t)+a_{1} \frac{d g(t)}{d t}+\ldots \ldots . .=b_{1} f(t)+b_{2} \frac{d f(t)}{d t}+\ldots .
$$

a's and b's are constants

## Input-Output System Relationship

$\square$ we examine several methods for describing the relationship between the input and output signals of linear time-invariant (LTI) systems.

- In characterizing the behavior of systems, we follow two main plans of analysis:

1. Frequency domain (discussed in short now and detailed later)
2.Time domain (objective of this chapter)

## Frequency Transfer Function

One way of testing a LTI system is by using the the input signal

$$
f(t)=e^{j \omega t}
$$

A potential solution can be written as:

$$
g(t)=H(\omega) e^{j \omega t}
$$

If we substitute $f(t)$ and $g(t)$ by their values in the DE describing the system, we obrain

## Frequency Transfer Function

$$
\begin{gathered}
\mathrm{a}_{0} \mathrm{~g}(\mathrm{t})+\mathrm{a}_{1} \frac{\mathrm{dg}(\mathrm{t})}{\mathrm{dt}}+\ldots \ldots . .=\mathrm{b}_{1} \mathrm{f}(\mathrm{t})+\mathrm{b}_{2} \frac{\mathrm{df}(\mathrm{t})}{\mathrm{dt}}+\ldots . \\
\mathrm{H}(\omega)=\frac{\sum_{\mathrm{k}} \mathrm{~b}_{\mathrm{k}}(\mathrm{j} \omega)^{\mathrm{k}}}{\sum_{\mathrm{m}}^{\mathrm{m}_{\mathrm{m}}(j \omega)^{\mathrm{m}}}}
\end{gathered}
$$

$\square \mathrm{H}(\omega)$ is called the frequency transfer function of the system. Note that it is a function of the system only

## Example

- Determine the frequency transfer function of this system


RC Lowpass filter

## Answer

$$
\mathrm{f}(\mathrm{t})=\mathrm{RC} \frac{\mathrm{dg}(\mathrm{t})}{\mathrm{dt}}+\mathrm{g}(\mathrm{t})
$$

The above is a Linear DE, Moreover

$$
\begin{aligned}
& 1=j \omega R C H(\omega)+H(\omega) \\
& H(\omega)=\frac{1}{1+j \omega R C}
\end{aligned}
$$

## Remarks

1. In general $\mathrm{H}(\omega)$ is a complex-valued function of frequency. Therefore $H(\omega)$, can be written as:

$$
H(\omega)=|H(j \omega)| e^{j \theta_{h}(\omega)}
$$

$|\mathrm{H}(\mathrm{j} \omega)|$ is called the magnitude response of the system, and $\theta_{\mathrm{h}}(\omega)$ is called the phase shift of the system. A device available for the rapid measurement of the magnitude response of a system is the sweep generator

## Impulse Response

$\square$ As it was said earlier, that the system can be represented either in time or frequency domains by impulse response (The response of the system when the input is an impulse function

- Mathematically speaking, if the system input is $\delta(\mathrm{t})$ and the corresponding output is $\mathrm{g}(\mathrm{t})$, then $\mathrm{g}(\mathrm{t})=\mathrm{F}\{\delta(\mathrm{t})\}$.


## Example

- Determine the impulse response of the system shown below



## Example

## - Answer: $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}\left(\mathrm{t}-\mathrm{t}_{0}\right)$



## The Convolution Integral

- The output of a continuous-time LTI system may also be determined solely from knowledge of the input and the system's impulse response



## The Convolution Integral

- The input-output relationship is given by the integral equation known as the convolution integral

$$
y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau
$$

$h(t)$ is the impulse response of the system, $x(t)$ is the input signal, and $y(t)$ is the output signal. The above integral is the convolution integral and it is denoted by:

$$
y(t)=x(t) * h(t)
$$

## The Convolution Integral

- The convolution integral can also be written as:

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau \\
& y(t)=\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau
\end{aligned}
$$

## The Convolution Integral

If $h(t)$ is causal

$$
\left\{\begin{array}{lll}
h(t)=0 & \text { for } & t<0 \\
h(t-\tau)=0 & \text { for } & t<\tau
\end{array} \Rightarrow\right.
$$

then

$$
y(t)=\int_{-\infty}^{t} x(\tau) h(t-\tau) d \tau
$$

and $x(t)=0$ for $t<0$, then

$$
\mathrm{y}(\mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{x}(\tau) \mathrm{h}(\mathrm{t}-\tau) \mathrm{d} \tau
$$

## Properties of the Convolution Integral

## 1. Commutative

The Convolution integral is symmetric with respect to $\mathrm{x}(\mathrm{t})$ and $\mathrm{h}(\mathrm{t})$

$$
\begin{aligned}
& \mathrm{x}(\mathrm{t}) * \mathrm{y}(\mathrm{t})=\mathrm{y}(\mathrm{t}) * \mathrm{x}(\mathrm{t}) \\
& \int_{-\infty}^{+\infty} x(\tau) y(t-\tau) d \tau=\int_{-\infty}^{+\infty} y(\tau) x(t-\tau) d \tau
\end{aligned}
$$

## Properties of the Convolution Integral

## 2. Distributive

The Convolution integral satisfies the following property

$$
\mathrm{f}_{1}(\mathrm{t}) *\left[\mathrm{f}_{2}(\mathrm{t})+\mathrm{f}_{3}(\mathrm{t})\right]=\mathrm{f}_{1}(\mathrm{t}) * \mathrm{f}_{2}(\mathrm{t})+\mathrm{f}_{1}(\mathrm{t}) * \mathrm{f}_{3}(\mathrm{t})
$$

## Properties of the Convolution Integral

## 3. Associative

The Convolution integral satisfies the following property

$$
f_{1}(t) *\left[f_{2}(t) * f_{3}(t)\right]=\left[f_{1}(t) * f_{2}(t)\right] * f_{3}(t)
$$

## Example

If $\mathrm{h}(\mathrm{t})=\mathrm{A} \sin (\pi \mathrm{t}) \mathrm{u}(\mathrm{t})$ and $\mathrm{x}(\mathrm{t})=\delta(\mathrm{t})-\delta(\mathrm{t}-2)$, detrmine $y(t)=x(t) * h(t)$.

## Example 1: Solution



## Example 2

If $x(t)=u(t-1)-u(t-3)$ and $h(t)=u(t)-u(t-2)$, determine $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{~h}(\mathrm{t})$

## Example 2: Solution

$$
y(t)=\left\{\begin{array}{cc}
0 & t<1 \\
t-1 & 1 \leq t \leq 3 \\
5-t & 3 \leq t \leq 5 \\
0 & t>5
\end{array}\right\}
$$

## Example 3

Let the impulse response of an LTI system be given by: $h(t)=u(t-1)-u(t-4)$. Find the output of this system in response to the input $x(t)=u(t)$ $+u(t-1)-2 u(t-2)$.

## Example 3: Solution

$$
y(t)=\left\{\begin{array}{cc}
0 & t<1 \\
t-1 & 1 \leq t<2 \\
2 t-3 & 2 \leq t<3 \\
3 & 3 \leq t>4 \\
7-t & 4 \leq t<5 \\
12-2 t & 5 \leq t<6 \\
0 & t \geq 6
\end{array}\right\}
$$

## Interconnections of LTI Systems

$\square$ In this section, we develop the relationships between the impulse response of an interconnection of LTI systems and the impulse responses of the constituent systems.

## Parallel Connection of LTI Systems

Consider two LTI systems with impulse responses $\mathrm{h}_{1}(\mathrm{t})$ and $\mathrm{h}_{2}(\mathrm{t})$ connected in parallel, as shown below
$\square$
$\square$


## Parallel Connection of LTI Systems

- The output of this connection of systems, $y(t)$, is the sum of the outputs of the two systems:

- Mathematically, the preceding result implies that convolution possesses the distributive property


## Cascade Connection of Systems

$\square$ Consider next the cascade connection of two LTI systems, as illustrated below


- Let $\mathrm{y}(\mathrm{t})$ be the output of the first system and therefore the input to the second system in the cascade, and let $\mathrm{z}(\mathrm{t})$ be the output of the second system


## Cascade Connection of Systems

$$
\begin{aligned}
& y(t)=x(t) * h_{1}(t) \\
& z(t)=y(t) * h_{2}(t)
\end{aligned}
$$

The above implies

$$
\mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t}) *\left\{\mathrm{~h}_{1}(\mathrm{t}) * \mathrm{~h}_{2}(\mathrm{t})\right\}
$$



