AMERICAN UNIVERSITY OF BEIRUT Department of Electrical and Computer Engineering EECE440 Signals and Systems

Lecturer: Prof. Fadi N Karameh

Sample problems 3

PROBLEM 1 (12%) Consider a DT LTI system with the impulse response

$$h[n] = \left(\frac{1}{2}\right)^n u[n]$$

Determine, using DTFTs, the response to each of the following inputs:

(i) $x[n] = \left(\frac{3}{4}\right)^n u[n]$ (ii) $x[n] = (n+1)\left(\frac{1}{4}\right)^n u[n]$ (iii) $x[n] = (-1)^n u[n]$

PROBLEM 2 Consider a system consisting of the cascade of two DT LTI systems with the frequency responses

$$H_1(e^{j\Omega}) = \frac{2 - e^{-j\Omega}}{1 + \frac{1}{2}e^{-j\Omega}}$$

and

$$H_2(e^{j\Omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\Omega} + \frac{1}{4}e^{-j2\Omega}}$$

a) Find the difference equation describing the overall system.

b) Determine the impulse response of the overall system.

PROBLEM 3 $y_1[n]$ and $y_2[n]$ are two real 8-pt sequences. You are given only the first five points of their DFTs as

$\tilde{Y}_1[k] = [2$	1	0	1	2]
$\tilde{Y}_2[k] = [0$	1	2	0	0]

b) Find the DTFT $\tilde{M}[k]$ for k = 1 and k = 4 where m[n] is

$$m[n] = y_1[n].y_2[n]$$

Hint: Exploit knowledge of DFT properties for real sequences.

PROBLEM 4 Find the DTFT of the following:

- a) $x[n] = \left(\frac{1}{2}\right)^n u[n+2]$
- b) x[n] = (n-2)(u[n+4] u[n-5])

PROBLEM 5 Find the signal x[n] which has the following DTFT

- a) $X(e^{j\Omega}) = i\sin(4\Omega) 2$
- b) $\left[e^{-j2\Omega}\frac{\sin(15\Omega/2)}{\sin(\Omega/2)}\right] * \frac{\sin(7\Omega/2)}{\sin(\Omega/2)}.$

PROBLEM 6 (10 %)

Consider the analog-to-discrete-to-analog system shown in figure 1. The CT signal $x_a(t)$ is sampled at a frequency of $F_s = 2000$ Hz ($T_s = 0.5$ msec). The resulting impulse train is then converted to a discrete time sequence $x_d[n]$. The Lowpass DT filter $H_d(e^{j\Omega})$ is subsequently used to filter $x_d[n]$ giving $y_d[n]$. Finally, a CT version of the output $y_a(t)$ is created, using an ideal DT-to-CT converter (at the same sampling frequency $F_s = 2000$ Hz).

Note : $H_d(e^{j\Omega})$, which is obviously periodic, is shown for only one period.

Figure 1: Problem 6

- a) For the CTFT of $x_a(t)$ given by $X_a(w)$ in the figure with $B = 2000\pi$ rad/sec, sketch the $X_d(e^{j\Omega})$, the DTFT of the DT sequence $x_d[n]$.
- b) Sketch $Y_a(w)$, the CTFT of the CT signal $y_a(t)$. Again, assume that we are using the same frequency as that of sampling $F_s = 2000$ Hz.

c) (BONUS 5%) Describe, using Matlab code, how would you use *Matlab* to obtain X(w), the CTFT of a CT signal x(t). Assume that I sample x(t) at 200 Hz and I have 1 second recording of it. Clearly describe the various input and output vectors you obtain, and label the coordinates of your axes. Hint: you have done this twice in the course so far.