a) Write a MIPS R2000 assembly subroutine that searches for the last occurrence of a string s1 in another string s2. If s1 is found in s2, your subroutine must return a pointer (i.e. the address) to the last location in s2 where s1 is found; otherwise, your subroutine must return zero. Assume both s1 and s2 are null terminated, that the starting addresses of s1 and s2 are passed as parameters to the subroutine in registers $a0 and $a1, and that the result of the subroutine is returned in register $v0. Include short comments in your code.

Answer:

 .text

 add $t0,$a0,$0 # Calculate length(s1) and store it in $t1
 add $t1,$0,$0

L1: lb $t2,0($t0)

 beq $t2,$0,L2

 addi $t1,$t1,1

 addi $t0, $t0, 1

 j L1

L2: beq $t1,$0,END0 # If $t1 == 0, return zero

 add $t0,$a1,$0 # Calculate length(s2) and store it in $t3
 add $t3,$0,$0

L3: lb $t2,0($t0)

 beq $t2,$0,L4

 addi $t3,$t3,1
 addi $t0, $t0, 1

 j L3

L4: beq $t3,$0,END0 # If $t3 == 0, return zero

 slt $t0,$t3,$t1 # If $t3 < $t1, return zero

 bne $t0,$0,END0

 sub $t0,$t3,$t1 # Initialize $v0 to &(s2[length(s2)-

 # length(s1)])
 add $v0,$a1,$t0

L5: addi $t0,$v0,$0 # Use $t0 and $t1 as s2 and s1

 # pointers, respectively
 addi $t1,$a0,$0

L6: lb $t2,0($t0) # Use $t2 and $t3 as s2 and s1

 # characters, respectively

 lb $t3,0($t1)

 beq $t3, $0, END

check if end of s1 has been reached

If $t3 == 0 return; $v0 points

to location of s1 in s2
 bne $t2,$t3,L7 # If $t2 != $t3 decrement
 addi $t0,$t0,1

 addi $t1,$t1,1

 j L6

L7: addi $v0,$v0,-1 # decrement $v0 and try

 # to find a match again

 slt $t0,$v0,$a1 # If $v0 < $a1, return zero

 bne $t0,$0,END0

 # no match
 j L5

END0: add $v0,$0,$0

END: jr $ra

b) Write a MIPS R2000 assembly subroutine that replaces the last n characters of a string s1 by the character c. Assume s1 is null terminated and that the subroutine is passed three parameters -- the starting address of s1, an unsigned integer n, and the ASCII code of the character c -- in registers $a0, $a1, and $a2, respectively. You may also assume that n is less than or equal to the length of the string. If the subroutine is successful, it must return the value one (0x00000001) in register $v0; otherwise it must return zero (0x00000000). Include short comments in your code.
Answer:

 .text

 add $t0,$a0,$0 # Calculate length(s1) and store it in $t1
 add $t1,$0,$0

L1: lb $t2,0($t0)

 beq $t2,$0,L2

 addi $t1,$t1,1

 addi $t0,$t0,1

 j L1

L2: beq $t1,$0,END0 # If $t1 == 0, return zero

 sub $t0,$t1,$a1 # Initialize $t2 to &(s1[length(s1)-n])

 add $t2,$a0,$t0

L3: sb $a2,0($t2) # Iterate over the characters pointed

 # to by $t2 and replaced them with $a2

 addi $t2,$t2,1

 addi $a1,$a1,-1

 bne $a1,$0,L3

END: addi $v0,$0,1

 jr $ra

END0: add $v0,$0,$0

 jr $ra
Question 2: Subroutine Linkage

V1) The main portion of a MIPS assembly program contains a call to a subroutine A. Subroutine A does not call any other subroutine and returns to the main program once it completes execution.

a) If the main program has important data stored in register $s3, does it need
to save it on the stack before calling subroutine A? Explain.

Answer: No. The main program does not need to store register $s3 since it will be preserved (i.e. saved and later restored) by subroutine A.

b) If subroutine A needs to use register $t6, does it need to save it on the
stack first? Explain.

Answer: No. Since register $t6 is not preserved across a subroutine call, subroutine A does not need to save it.

c) Once it starts executing, does subroutine A need to save $sp, $fp, and $ra on the stack? Explain.

Answer: No. Since subroutine A does not call another subroutine, it does not need to save $sp, $fp, or $ra.

d) If the main program needs to pass three additional arguments to subroutine A beyond those passed in registers $a0 to $a3, and if those arguments are stored in registers $t2, $t3, and $t4, show the sequence of instructions that must be executed immediately before the subroutine call. Include the subroutine call in the sequence of instructions.

Answer:

addi $sp,$sp,-12
sw $t2,8($sp)
sw $t3,4($sp)
sw $t4,0($sp)
jal subroutine_A

e) While executing subroutine A, the subroutine needs to access the argument that was originally stored in register $t3. Assuming subroutine A saves registers $s0 to $s3 on the stack, show the assembly instruction that can be used to retrieve this argument. Explain using a stack diagram.

Answer: The following diagram shows the stack during the execution of subroutine A:

$t2
$t3
$t4

$s0 <-- $fp
$s1
$s2
$s3 <-- $sp

The argument that was originally stored in register $t3 can be accessed by executing the following instruction:
lw $t3,8($fp) or lw $t3,20($sp)

V2) The main portion of a MIPS assembly program contains a call to a subroutine A. At some point, subroutine A calls subroutine B and returns to the main program once both subroutines have completed execution.

a) If the main program has important data stored in register $t3, does it need to save it on the stack before calling subroutine A? Explain.

Answer: Yes. Since a subroutine is not required to preserve temporary registers the main program must store register $t3 on the stack if it needs to preserve it value across the call to subroutine A.

b) If subroutine A needs to use register $t4, does it need to save it on the stack first? Explain.

Answer: No. Since subroutine A is not required to preserve temporary registers, it can use register $t4 without having to save it on the stack first.

c) Once it starts executing, does subroutine A need to save $sp, $fp, and $ra on the stack? Explain.

Answer: Yes. Since subroutine A calls subroutine B it needs to preserve registers $sp, $fp, and $ra.

d) If the main program needs to pass two additional arguments to subroutine A beyond those passed in registers $a0 to $a3, and if those arguments are stored in registers $t5 and $t6, show the sequence of instructions that must be executed immediately before the subroutine call. Include the subroutine call in the sequence of instructions.

Answer:

addi $sp,$sp,-8
sw $t5,4($sp)
sw $t6,0($sp)
jal subroutine_A

e) While executing subroutine A, the subroutine needs to access the argument that was originally stored in register $t6. Assuming subroutine A saves registers $s0 to $s2 on the stack, show the assembly instruction that can be used to retrieve this argument. Explain using a stack diagram.

Answer: The following diagram shows the stack during the execution of subroutine A:

$t5
$t6

$s0 <-- $fp
$s1
$s2 <-- $sp

The argument that was originally stored in register $t6 can be accessed by executing the following instruction:
lw $t6,4($fp) or lw $t6,12($sp)

V3) The main portion of a MIPS assembly program contains a call to a subroutine A. Subroutine A does not call any other subroutine and returns to the main program once it completes execution.

a) If the main program has important data stored in register $t5, does it need to save it on the stack before calling subroutine A? Explain.

Answer: Yes. Since a subroutine is not required to preserve temporary registers the main program must store register $t5 on the stack if it needs to preserve it value across the call to subroutine A.

b) If subroutine A needs to use register $s6, does it need to save it on the stack first? Explain.

Answer: Yes. Since a subroutine must preserve all saved registers that it will use, it must save $s6 on the stack before using it.

c) Once it starts executing, does subroutine A need to save $sp, $fp, and $ra on the stack? Explain.

Answer: No. Since subroutine A does not call another subroutine, it does not need to save $sp, $fp, or $ra.

d) If the main program needs to pass four additional arguments to subroutine A beyond those passed in registers $a0 to $a3, and if those arguments are stored in registers $t0, $t1, $t2, and $t3, show the sequence of instructions that must be executed immediately before the subroutine call. Include the subroutine call in the sequence of instructions.

Answer:

addi $sp,$sp,-16
sw $t0,12($sp)
sw $t1,8($sp)
sw $t2,4($sp)
sw $t3,0($sp)
jal subroutine_A

e) While executing subroutine A, the subroutine needs to access the argument that was originally stored in register $t0. Assuming subroutine A saves registers $s4 to $s7 on the stack, show the assembly instruction that can be used to retrieve this argument. Explain using a stack diagram.

Answer: The following diagram shows the stack during the execution of subroutine A:

$t0
$t1
$t2
$t3

$s4 <-- $fp
$s5
$s6
$s7 <-- $sp

The argument that was originally stored in register $t0 can be accessed by executing the following instruction:
lw $t0,16($fp) or lw $t0,28($sp)

V4) The main portion of a MIPS assembly program contains a call to a subroutine A. At some point, subroutine A calls subroutine B and returns to the main program once both subroutines have completed execution.

a) If the main program has important data stored in register $s0, does it need to save it on the stack before calling subroutine A? Explain.

Answer: No. The main program does not need to store register $s0 since it will be preserved (i.e. saved and later restored) by subroutine A.

b) If subroutine A needs to use register $s4, does it need to save it on the stack first? Explain.

Answer: Yes. Since a subroutine must preserve all saved registers that it will use, it must save $s4 on the stack before using it.

c) Once it starts executing, does subroutine A need to save $sp, $fp, and $ra on the stack? Explain.

Answer: Yes. Since subroutine A calls subroutine B it needs to preserve registers $sp, $fp, and $ra.

d) If the main program needs to pass five additional arguments to subroutine A beyond those passed in registers $a0 to $a3, and if those arguments are stored in registers $t0 to $t4 show the sequence of instructions that must be executed immediately before the subroutine call. Include the subroutine call in the sequence of instructions.

Answer:

addi $sp,$sp,-20
sw $t0,16($sp)
sw $t1,12($sp)
sw $t2,8($sp)
sw $t3,4($sp)
sw $t4,0($sp)
jal subroutine_A

e) While executing subroutine A, the subroutine needs to access the argument that was originally stored in register $t1. Assuming subroutine A saves registers $s5 to $s7 on the stack, show the assembly instruction that can be used to retrieve this argument. Explain using a stack diagram.

Answer: The following diagram shows the stack during the execution of subroutine A:

$t0
$t1
$t2
$t3
$t4

$s5 <-- $fp
$s6
$s7 <-- $sp

The argument that was originally stored in register $t0 can be accessed by executing the following instruction:
lw $t1,16($fp) or lw $t1,24($sp)

===

Question 3: PIC Assembly

V1) Consider the following sequence of PIC16F84 assembly instructions. If the carry flag is initially clear, what is the final value stored in register 15?

 MOVLW 153
 MOVWF 15
 MOVLW 5
 MOVWF 16
LABEL: RRF 15,1
 DECFSZ 16,1
 GOTO LABEL
 SWAPF 15,1

Answer: This sequence of instructions initializes register 15 to 153 (99H), rotates the bits of the register 5 bit positions to the right, and swaps the upper and lower four bits. The final value stored in register 15 is: 49H = 73

V2) Consider the following sequence of PIC16F84 assembly instructions. If the carry flag is initially set, what is the final value stored in register 15?

 MOVLW 177
 MOVWF 15
 MOVLW 5
 MOVWF 16
LABEL: RLF 15,1
 DECFSZ 16,1
 GOTO LABEL
 SWAPF 15,1

Answer: This sequence of instructions initializes register 15 to 177 (B1H), rotates the bits of the register 5 bit positions to the left, and swaps the upper and lower four bits. The final value stored in register 15 is: B3H = 179

V3) Consider the following sequence of PIC16F84 assembly instructions. If the carry flag is initially clear, what is the final value stored in register 15?

 MOVLW 203
 MOVWF 15
 MOVLW 5
 MOVWF 16
LABEL: RRF 15,1
 DECFSZ 16,1
 GOTO LABEL
 COMF 15,1

Answer: This sequence of instructions initializes register 15 to 203 (CB H), rotates the bits of the register 5 bit positions to the right, and complements the bits. The final value stored in register 15 is: 49H = 73

V4) Consider the following sequence of PIC16F84 assembly instructions. If the carry flag is initially set, what is the final value stored in register 15?

 MOVLW 98
 MOVWF 15
 MOVLW 5
 MOVWF 16
LABEL: RLF 15, 1
 DECFSZ 16, 1
 GOTO LABEL
 COMF 15, 1

Answer: This sequence of instructions initializes register 15 to 98 (62H), rotates the bits of the register 5 bit positions to the left, and complements the bits. The final value stored in register 15 is: A9H = 169
