Chapter 10: Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

1. Give the number of lone pairs around the central atom and the molecular geometry of CBr_{4}.
A) 0 lone pairs, square planar
D) 1 lone pair, trigonal bipyramidal
B) 0 lone pairs, tetahedral
E) 2 lone pairs, square planar
C) 1 lone pair, square pyramidal
Ans: B Category: Medium Section: 10.1
2. Give the number of lone pairs around the central atom and the molecular geometry of SCl_{2}.
A) 0 lone pairs, linear
D) 3 lone pairs, bent
B) 1 lone pair, bent
E) 3 lone pairs, linear
C) 2 lone pairs, bent
Ans: C Category: Medium Section: 10.1
3. Give the number of lone pairs around the central atom and the molecular geometry of XeF_{2}.
A) 0 lone pairs, linear
B) 1 lone pair, bent
D) 3 lone pairs, bent
E) 3 lone pairs, linear
C) 2 lone pairs, bent

Ans: E Category: Medium Section: 10.1
4. Give the number of lone pairs around the central atom and the molecular geometry of SeF_{4}.
A) 0 lone pairs, tetrahedral
B) 1 lone pair, distorted tetrahedron (seesaw)
C) 1 lone pair, square pyramidal
D) 1 lone pair, tetrahedral
E) 2 lone pairs, square planar

Ans: B Category: Medium Section: 10.1
5. Give the number of lone pairs around the central atom and the molecular geometry of XeF_{4}.
A) 0 lone pairs, tetrahedral
B) 1 lone pair, distorted tetrahedron (seesaw)
C) 1 lone pair, square pyramidal
D) 1 lone pair, tetrahedral
E) 2 lone pairs, square planar

Ans: E Category: Medium Section: 10.1
6. Give the number of lone pairs around the central atom and the molecular geometry of IF_{5}.
A) 0 lone pairs, square pyramidal
D) 1 lone pair, square pyramidal
B) 0 lone pairs, trigonal bipyramidal
E) 2 lone pairs, pentagonal
C) 1 lone pair, octahedral

Ans: D Category: Medium Section: 10.1
7. Give the number of lone pairs around the central atom and the geometry of the ion $\mathrm{SeO}_{4}{ }^{2-}$
A) 0 lone pairs, square planar
B) 0 lone pairs, tetrahedral
C) 1 lone pair, distorted tetrahedron (seesaw)
D) 1 lone pair, square pyramidal
E) 2 lone pairs, square planar

Ans: B Category: Medium Section: 10.1
8. Give the number of lone pairs around the central atom and the geometry of the ion PCl_{4}^{-}.
A) 0 lone pairs, tetrahedral
B) 1 lone pair, distorted tetrahedron (seesaw)
C) 1 lone pair, square pyramidal
D) 1 lone pair, tetrahedral
E) 2 lone pairs, square planar

Ans: B Category: Medium Section: 10.1
9. Give the number of lone pairs around the central atom and the geometry of the ion $\mathrm{IBr}_{2}{ }^{-}$.
A) 0 lone pairs, linear
B) 1 lone pair, bent
C) 2 lone pairs, bent
D) 3 lone pairs, bent
E) 3 lone pairs, linear

Ans: E Category: Medium Section: 10.1
10. Give the number of lone pairs around the central atom and the geometry of the ion $\mathrm{ClO}_{2}{ }^{-}$.
A) 0 lone pairs, linear
B) 1 lone pair, bent
D) 3 lone pairs, bent
E) 3 lone pairs, linear
C) 2 lone pairs, bent

Ans: C Category: Medium Section: 10.1
11. Give the number of lone pairs around the central atom and the geometry of the ion $\mathrm{ClO}_{3}{ }^{-}$.
A) 0 lone pairs, trigonal
B) 1 lone pair, bent
D) 2 lone pairs, T-shaped
E) 2 lone pairs, trigonal
C) 1 lone pair, trigonal pyramidal

Ans: C Category: Medium Section: 10.1
12. Give the number of lone pairs around the central atom and the geometry of the ion NO_{2}^{-}.
A) 0 lone pairs, linear
B) 1 lone pair, bent
D) 3 lone pairs, bent
E) 3 lone pairs, linear
C) 2 lone pair, bent

Ans: B Category: Medium Section: 10.1
13. According to the VSEPR theory, the geometry of the SO_{3} molecule is
A) pyramidal.
D) distorted tetrahedron (seesaw).
B) tetrahedral.
E) square planar.
C) trigonal planar.

Ans: C Category: Medium Section: 10.1
14. The geometry of the SF_{4} molecule is
A) tetrahedral.
D) square planar.
B) trigonal pyramidal.
E) distorted tetrahedron (seesaw).
C) trigonal planar.

Ans: E Category: Medium Section: 10.1
15. Use VSEPR theory to predict the geometry of the PCl_{3} molecule.
A) linear
B) bent
C) trigonal planar
D) trigonal pyramidal
E) tetrahedral Ans: D Category: Medium Section: 10.1
16. According to VSEPR theory, the geometry of the PH_{3} molecule is best described as A) linear. B) trigonal planar. C) tetrahedral. D) bent. E) trigonal pyramidal.

Ans: E Category: Medium Section: 10.1
17. The geometry of the CS_{2} molecule is best described as
A) linear.
B) trigonal planar.
C) tetrahedral.
D) bent. E) trigonal pyramidal.
Ans: A Category: Medium Section: 10.1
18. The geometry of the ClF_{3} molecule is best described as:
A) distorted tetrahedron
D) T-shaped
B) trigonal planar
E) trigonal pyramidal
C) tetrahedral

Ans: D Category: Medium Section: 10.1
19. According to the VSEPR theory, the molecular geometry of the carbonate ion, $\mathrm{CO}_{3}{ }^{2-}$, is
A) square planar.
D) trigonal planar.
B) tetrahedral.
E) octahedral.
C) pyramidal.

Ans: D Category: Medium Section: 10.1
20. According to the VSEPR theory, the molecular geometry of beryllium chloride is
A) linear
B) trigonal planar
C) bent
D) tetrahedral
E) trigonal pyramidal

Ans: A Category: Medium Section: 10.1
21. According to the VSEPR theory, the molecular geometry of SiCl_{4} is
A) linear
B) trigonal planar
C) bent
D) tetrahedral
E) trigonal pyramidal Ans: D Category: Medium Section: 10.1
22. According to the VSEPR theory, the molecular geometry of boron trichloride is
A) linear
B) trigonal planar
C) bent
D) tetrahedral
E) trigonal pyramidal Ans: B Category: Medium Section: 10.1
23. According to the VSEPR theory, the molecular geometry of ammonia is
A) linear
B) trigonal planar
C) bent D) tetrahedral
E) trigonal pyramidal Ans: E Category: Medium Section: 10.1
24. According to the VSEPR theory, which one of the following species should be linear?
A) $\mathrm{H}_{2} \mathrm{~S}$
B) HCN
C) BF_{3}
D) $\mathrm{H}_{2} \mathrm{CO}$
E) SO_{2}

Ans: B Category: Medium Section: 10.1
25. According to VSEPR theory, which one of the following molecules should have a geometry that is trigonal bipyramidal?
A) SF_{4}
B) XeF_{4}
C) NF_{3}
D) SF_{6}
E) PF_{5}

Ans: E Category: Medium Section: 10.1
26. According to VSEPR theory, which one of the following molecules should be nonlinear?
A) CO_{2}
B) $\mathrm{C}_{2} \mathrm{H}_{2}$
C) SO_{2}
D) BeCl
E) KrF_{2}
Ans: C Category: Medium Section: 10.1
27. Which one of the following molecules has tetrahedral geometry?
A) XeF_{4}
B) BF_{3} C) AsF_{5}
D) $\left.\mathrm{CF}_{4} \quad \mathrm{E}\right) \mathrm{NH}_{3}$
Ans: D Category: Medium Section: 10.1
28. According to VSEPR theory, which one of the following molecules has tetrahedral geometry?
A) NH_{3}
B) CCl_{4}
C) CO_{2}
D) SF_{4}
E) PCl_{5}

Ans: B Category: Medium Section: 10.1
29. According to VSEPR theory, which one of the following species has a tetrahedral geometry?
A) $\mathrm{IF}_{4}{ }^{+}$
B) IF_{4}^{-}
C) $\mathrm{PCl}_{4}{ }^{+}$
D) PCl_{4}^{-}
E) SeF_{4}
Ans: C Category: Medium Section: 10.1
30. Predict the geometry around the central atom in $\mathrm{PO}_{4}{ }^{3-}$.
A) trigonal planar
D) trigonal bipyramidal
B) trigonal pyramidal
E) octahedral
C) tetrahedral
Ans: C Category: Medium Section: 10.1
31. Predict the geometry around the central atom in $\mathrm{SO}_{4}{ }^{2-}$.
A) trigonal planar
D) trigonal bipyramidal
B) trigonal pyramidal
E) octahedral
C) tetrahedral
Ans: C Category: Medium Section: 10.1
32. Predict the geometry around the central atom in XeO_{4}.
A) trigonal planar
D) trigonal bipyramidal
B) trigonal pyramidal
E) octahedral
C) tetrahedral

Ans: C Category: Medium Section: 10.1
33. Which of the following substances is/are bent?
(i) $\mathrm{H}_{2} \mathrm{~S}$
(ii). CO_{2} (iii) ClNO
(iv) NH_{2}^{-}
(v) O_{3}
A) only (iii)
D) all are bent except for (iv)
B) only (i) and (v)
E) all are bent except for (ii)
C) only (i), (iii), and (v)

Ans: E Category: Medium Section: 10.1
34. Which of the following substance is/are planar?
(i) SO_{3}
(ii) $\mathrm{SO}_{3}{ }^{2-}$
(iii) $\mathrm{NO}_{3}{ }^{-}$
(iv) PF_{3} (v) BF_{3}
A) only (i) and (ii)
D) all are planar except (iv)
B) only (i), (iii), and (v)
E) all are planar except (ii)
C) only (iv)

Ans: B Category: Medium Section: 10.1
35. The bond angle in SCl_{2} is expected to be
A) a little less than 109.5°.
D) 120°.
B) 109.5°.
E) $\quad 180^{\circ}$.
C) a little more than 109.5°.

Ans: A Category: Medium Section: 10.1
36. The bond angle in ICl_{2}^{-}is expected to be
A) a little less than 109.5°.
D) 120°.
B) 109.5°.
E) $\quad 180^{\circ}$.
C) a little more than 109.5°.

Ans: E Category: Medium Section: 10.1
37. The bond angles in $\mathrm{SF}_{5}{ }^{+}$are expected to be
A) 90°.
D) 90° and 180°.
B) 120°.
E) $90^{\circ}, 120^{\circ}$, and 180°.
C) 90° and 120°.
Ans: E Category: Medium Section: 10.1
38. The bond angles in $\mathrm{CO}_{3}{ }^{2-}$ are expected to be
A) a little less than 109.5°.
D) 120°.
B) 109.5°.
E) a little more than 120°.
C) a little less than 120°.

Ans: D Category: Medium Section: 10.1
39. The bond angle in CbO is expected to be approximately
A) 90°
B) 109.5°
C) 120°
D) 145°
E) 180°

Ans: B Category: Medium Section: 10.1
40. The $\mathrm{F}-\mathrm{S}-\mathrm{F}$ bond angles in SF_{6} are
A) 90° and 180°
B) 109.5°
C) 120°
D) 180°
E) 90° and 120°

Ans: A Category: Medium Section: 10.1
41. The $\mathrm{F}-\mathrm{Cl}-\mathrm{F}$ bond angles in CF_{3} are expected to be approximately
A) 90° only.
B) 109.5° only.
D) 180° only.
E) 90° and 180°.
C) 120° only.

Ans: E Category: Medium Section: 10.1
42. According to the VSEPR theory, the actual $\mathrm{F}-\mathrm{As}-\mathrm{F}$ bond angles in the $\mathrm{AsF}_{4}{ }^{-}$ion are predicted to be
A) 109.5°
B) 90° and 120°
C) 180°
D) $<109.5^{\circ}$
E) $<90^{\circ}$ and $<120^{\circ}$

Ans: E Category: Medium Section: 10.1
43. The $\mathrm{C}-\mathrm{N}-\mathrm{O}$ bond angle in nitromethane, $\mathrm{CH}_{3} \mathrm{NO}_{2}$, is expected to by approximately
A) 60°
B) 90°
C) 109.5°
D) 120°
E) 180°

Ans: D Category: Medium Section: 10.1
44. Which one of the following molecules is nonpolar?
A) NH_{3}
B) $\mathrm{OF}_{2} \quad$ C) $\mathrm{CH}_{3} \mathrm{Cl}$
D) $\mathrm{H}_{2} \mathrm{O}$
E) BeCl

Ans: E Category: Medium Section: 10.2
45. Complete this sentence: The PC_{5} molecule has
A) nonpolar bonds, and is a nonpolar molecule.
B) nonpolar bonds, but is a polar molecule.
C) polar bonds, and is a polar molecule.
D) polar bonds, but is a nonpolar molecule.

Ans: D Category: Medium Section: 10.2
46. Which one of the following molecules has a non-zero dipole moment?
A) BeCl
B) Br_{2}
C) $\mathrm{BF}_{3} \quad$ D) IBr E) CO_{2}

Ans: D Category: Medium Section: 10.2
47. Which one of the following molecules has a zero dipole moment?
A) CO
B) $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ C) SO_{3}
D) $\left.\mathrm{SO}_{2} \quad \mathrm{E}\right) \mathrm{NH}_{3}$

Ans: C Category: Medium Section: 10.2
48. Which one of the following molecules is polar?
A) $\mathrm{PBr}_{5} \quad$ B) CCl_{4} C) BrF_{5} D) $\mathrm{XeF}_{2} \quad$ E) XeF_{4}

Ans: C Category: Medium Section: 10.2
49. Predict the molecular geometry and polarity of the SO_{2} molecule.
A) linear, polar \quad D) bent, nonpolar
B) linear, nonpolar E) None of the above.
C) bent, polar

Ans: C Category: Medium Section: 10.2
50. Predict the geometry and polarity of the CS_{2} molecule.
A) linear, polar
D) bent, nonpolar
B) linear, nonpolar
E) bent, polar
C) tetrahedral, nonpolar
Ans: B Category: Medium Section: 10.2
51. Which of the following species has the largest dipole moment (i.e., is the most polar)?
A) CH_{4}
B) $\left.\mathrm{CH}_{3} \mathrm{Br} \quad \mathrm{C}\right) \mathrm{CH}_{3} \mathrm{Cl}$
D) $\left.\mathrm{CH}_{3} \mathrm{~F} \quad \mathrm{E}\right) \mathrm{CH}_{3} \mathrm{I}$

Ans: D Category: Medium Section: 10.2
52. N, N-diethyl- m-tolumide (DEET) is the active ingredient in many mosquito repellents. What is the hybridization state of carbon indicated by the arrow in the structure of DEET shown below?

$\begin{array}{lllll}\text { A) } s p & \text { B) } s p^{2} & \text { C) } s p^{3} & \text { D) } s p^{3} d & \text { E) } s p^{3} d^{2}\end{array}$
Ans: B Category: Medium Section: 10.4
53. N, N-diethyl- m-tolumide (DEET) is the active ingredient in many mosquito repellents. What is the hybridization state of carbon indicated by the arrow in the structure of DEET shown below?

A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: C Category: Medium Section: 10.4
54. N, N-diethyl- m-tolumide (DEET) is the active ingredient in many mosquito repellents. What is the hybridization state of carbon indicated by the arrow in the structure of DEET shown below?

A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: B Category: Medium Section: 10.4
55. N, N-diethyl- m-tolumide (DEET) is the active ingredient in many mosquito repellents. What is the hybridization state of the nitrogen atom in the structure of DEET shown below?

A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: C Category: Medium Section: 10.4
56. Ibuprofen is used as an analgesic for the relief of pain, and also to help reduce fever. What is the hybridization state of carbon indicated by the arrow in the structure of ibuprofen shown below?

A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: C Category: Medium Section: 10.4
57. Ibuprofen is used as an analgesic for the relief of pain, and also to help reduce fever. What is the hybridization state of carbon indicated by the arrow in the structure of ibuprofen shown below?

A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: B Category: Medium Section: 10.4
58. Ibuprofen is used as an analgesic for the relief of pain, and also to help reduce fever. What is the hybridization state of carbon indicated by the arrow in the structure of ibuprofen shown below?

A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: B Category: Medium Section: 10.4
59. Ibuprofen is used as an analgesic for the relief of pain, and also to help reduce fever. What is the hybridization state of oxygen indicated by the arrow in the structure of ibuprofen shown below?

A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: C Category: Medium Section: 10.4
60. Indicate the type of hybrid orbitals used by the central atom in PCl_{3}.
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
$\begin{array}{lll}\text { D) } s p^{3} d & \text { E) } s p^{3} d^{2}\end{array}$

Ans: C Category: Medium Section: 10.4
61. Indicate the type of hybrid orbitals used by the central atom in CCl_{4}.
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: C Category: Medium Section: 10.4
62. Indicate the type of hybrid orbitals used by the central atom in SF_{6}.
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: E Category: Medium Section: 10.4
63. What is the hybridization of the As atom in the AsF_{5} molecule?
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: D Category: Medium Section: 10.4
64. Indicate the type of hybrid orbitals used by the central atom in TeF_{4}.
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: D Category: Medium Section: 10.4
65. Indicate the type of hybrid orbitals used by the central atom in BrF_{3}.
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
$\begin{array}{lll}\text { D) } s p^{3} d & \text { E) } s p^{3} d^{2}\end{array}$

Ans: D Category: Medium Section: 10.4
66. What is the hybridization of the iodine atom in the IF_{5} molecule?
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: E Category: Medium Section: 10.4
67. What is the hybridization on the central atom in $\mathrm{NO}_{3}{ }^{-}$?
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: B Category: Medium Section: 10.5
68. In which one of the following molecules is the central atom $s p^{2}$ hybridized?
A) SO_{2}
B) $\mathrm{N}_{2} \mathrm{O}$
C) BeCl_{2}
D) NF_{3}
E) PF_{5}

Ans: A Category: Medium Section: 10.5
69. What is the hybridization of As in the AsF_{4}^{-}ion?
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: D Category: Medium Section: 10.4
70. What is the hybridization of the central atom in $\mathrm{ClO}_{3}{ }^{-}$?
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: C Category: Medium Section: 10.4
71. The hybridization of the central nitrogen atom in the molecule $\mathrm{N}_{2} \mathrm{O}$ is
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

Ans: A Category: Medium Section: 10.5
72. If a triatomic molecule is linear, then the hybridization of the central atom will be
A) $s p$
B) $s p^{2}$
C) $s p$ or $s p^{3}$
D) $s p$ or $s p^{3} d$
E) $s p^{2}$ or $s p^{3} d^{2}$
Ans: D Category: Medium Section: 10.4
73. In which of these molecules do the two nitrogen atoms have different hybridizations?
A) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
B) $\mathrm{N}_{2} \mathrm{H}_{4} \quad$ C) $\mathrm{N}_{2} \mathrm{O}_{4}$
D) $\mathrm{N}_{2} \mathrm{O}_{5}$
E) none of these

Ans: A Category: Medium Section: 10.5
74. Which of the following species have the same geometries?
A) $\mathrm{NH}_{2}{ }^{-}$and $\mathrm{H}_{2} \mathrm{O}$
B) $\mathrm{NH}_{2}{ }^{-}$and BeH_{2}
C) $\mathrm{H}_{2} \mathrm{O}$ and BeH_{2}
D) $\mathrm{NH}_{2}{ }^{-}, \mathrm{H}_{2} \mathrm{O}$, and BeH_{2}

Ans: A Category: Medium Section: 10.1
75. Which of the following molecules have the same geometries?
A) SF_{4} and CH_{4}
B) CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
C) CO_{2} and BeH_{2}
D) $\mathrm{N}_{2} \mathrm{O}$ and NO_{2}

Ans: C Category: Medium Section: 10.1
76. The number of pi bonds in the molecule below is

A) 1 B) 2
C) 3
D) 5
E) 9

Ans: C Category: Medium Section: 10.5
77. The number of pi bonds in the molecule below is

A) 2
B) $4 \quad$ C) 6
D) 10
E) 15

Ans: B Category: Medium Section: 10.5
78. The number of pi bonds in the oxalate ion $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$ is
A) 1
B) 2
C) 3
D) 4 E) 5

Ans: B Category: Difficult Section: 10.5
79. Consider the species $\mathrm{Cb}^{+}, \mathrm{Cl}_{2}$, and Cb_{2}^{-}. Which of these species will be paramagnetic?
A) only Cb_{2}
D) $\mathrm{Cl}_{2}{ }^{+}$and Cl^{-}
B) $\mathrm{Cl}_{2}{ }^{+}$and Cl_{2}
E) all three are paramagnetic
C) $\quad \mathrm{Cl}_{2}$ and Cl_{2}^{-}

Ans: D Category: Difficult Section: 10.7
80. Consider the species $\mathrm{O}_{2}^{-}, \mathrm{O}_{2}$, and $\mathrm{O}_{2}{ }^{+}$. Which of these species will be paramagnetic?
A) O_{2} and O_{2}^{-}
D) only O_{2}
B) $\mathrm{O}_{2}{ }^{+}$and O_{2}
E) all three are paramagnetic
C) $\mathrm{O}_{2}{ }^{+}$and O_{2}^{-}

Ans: E Category: Difficult Section: 10.7
81. Consider the species $\mathrm{N}_{2}^{-}, \mathrm{N}_{2}$, and $\mathrm{N}_{2}{ }^{+}$. Which of these species will be paramagnetic?
A) $\quad \mathrm{N}_{2}$ and $\mathrm{N}_{2}{ }^{-}$
D) only $\mathrm{N}_{2}{ }^{-}$
B) $\mathrm{N}_{2}{ }^{+}$and N_{2}
E) none are paramagnetic
C) $\quad \mathrm{N}_{2}{ }^{+}$and $\mathrm{N}_{2}{ }^{-}$

Ans: C Category: Difficult Section: 10.7
82. In which of the following would the bonding be strengthened with the addition of an electron to form the negative molecular ion?
A) N_{2}
B) O_{2}
C) F_{2}
D) all of these E) none of these

Ans: E Category: Difficult Section: 10.7
83. In which of the following would the bonding be strengthened with the addition of an electron to form the negative molecular ion?
A) C_{2}
B) O_{2}
C) N_{2}
D) all of these
E) none of these

Ans: A Category: Difficult Section: 10.7
84. In which of the following would the bonding be weakened with the addition of an electron to form the negative molecular ion?
A) B_{2}
B) C_{2}
C) N_{2}
D) all of these E) none of these

Ans: C Category: Difficult Section: 10.7
85. In which of the following would the bonding be weakened with the addition of an electron to form the negative molecular ion?
A) N_{2}
B) O_{2}
C) F_{2}
D) all of these
E) none of these

Ans: D Category: Difficult Section: 10.7
86. Which of the following is not true of molecular orbitals?
A) The number of molecular orbitals formed is always equal to the number of atomic orbitals combined.
B) A molecular orbital can accommodate up to two electrons.
C) When electrons are added to orbitals of the same energy, the most stable arrangement is predicted by Hund's rule.
D) Low-energy molecular orbitals fill before high-energy molecular orbitals fill.
E) For any substance, the number of electrons in molecular orbitals is equal to the sum of all the valence electrons on the bonding atoms.
Ans: E Category: Medium Section: 10.7
87. The electrons in the delocalized molecular orbitals of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
A) are confined between two adjacent bonding atoms.
B) are free to move around the six-membered ring.
C) form the electron pairs in the $\mathrm{C}-\mathrm{H}$ bonds of the compound.
D) are unevenly distributed through the molecule.
E) are responsible for the fact that the bonds between three pairs of carbon atoms in the ring are longer and stronger than the bonds between the other three pairs of carbon atoms.
Ans: B Category: Medium Section: 10.8
88. Which of the following correctly lists species in order of increasing bond length?
A) $\mathrm{O}_{2}<\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{-}$
B) $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}<\mathrm{O}_{2}^{+}$
D) $\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{+}<\mathrm{O}_{2}$
E) $\mathrm{O}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}$
C) $\mathrm{O}_{2}{ }^{+}<\mathrm{O}_{2}<\mathrm{O}_{2}^{-}$

Ans: C Category: Medium Section: 10.7
89. Which of the following correctly lists species in order of increasing bond length?
A) $\mathrm{C}_{2}^{-}<\mathrm{C}_{2}<\mathrm{C}_{2}^{+}$
B) $\mathrm{C}_{2}<\mathrm{C}_{2}^{+}<\mathrm{C}_{2}^{-}$
D) $\mathrm{C}_{2}{ }^{+}<\mathrm{C}_{2}<\mathrm{C}_{2}^{-}$
E) $\quad \mathrm{C}_{2}{ }^{+}<\mathrm{C}_{2}^{-}<\mathrm{C}_{2}$
C) $\mathrm{C}_{2}^{-}<\mathrm{C}_{2}^{+}<\mathrm{C}_{2}$

Ans: A Category: Medium Section: 10.7
90. Which of the following correctly lists species in order of increasing bond order?
A) $\mathrm{C}_{2}<\mathrm{Li}_{2}<\mathrm{Be}_{2}<\mathrm{N}_{2}$
B) $\mathrm{Be}_{2}<\mathrm{Li}_{2}<\mathrm{C}_{2}<\mathrm{N}_{2}$
C) $\mathrm{N}_{2}<\mathrm{Be}_{2}<\mathrm{Li}_{2}<\mathrm{C}_{2}$
D) $\mathrm{N}_{2}<\mathrm{C}_{2}<\mathrm{Li}_{2}<\mathrm{Be}_{2}$
E) $\quad \mathrm{Be}_{2}<\mathrm{C}_{2}<\mathrm{N}_{2}<\mathrm{Li}_{2}$

Ans: B Category: Medium Section: 10.7
91. Use VSEPR theory to predict the molecular geometry of $\mathrm{H}_{3} \mathrm{O}^{+}$(hydronium ion).

Ans: trigonal pyramidal
Category: Medium Section: 10.1
92. Use VSEPR theory to predict the molecular geometry of $\mathrm{CO}_{3}{ }^{2-}$.

Ans: trigonal planar
Category: Medium Section: 10.1
93. Use VSEPR theory to predict the molecular geometry of SF_{4} (sulfur tetrafluoride).

Ans: distorted tetrahedron (seesaw)
Category: Medium Section: 10.1
94. Use VSEPR theory to explain why the water molecule is bent, rather than linear.

Ans: About the central oxygen atom are two lone pairs and two bonding pairs, with these four electron pairs adopting an (approximately) tetrahedral geometry in order to minimize the electron-electron repulsion. The molecular geometry, reflecting only the orientation of the bonding pairs, is thus bent.
Category: Medium Section: 10.1
95. According to VSEPR theory, which of the following triatomic ions should be linear: $\mathrm{N}_{3}{ }^{-}$, $\mathrm{I}_{3}{ }^{-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{SCN}^{-}$.
Ans: $\mathrm{N}_{3}{ }^{-}, \mathrm{I}_{3}{ }^{-}$, and SCN^{-}are linear
Category: Medium Section: 10.1
96. Using periodic trends, arrange the following molecules in order of increasing dipole moment: $\mathrm{NH}_{3}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}$.
Ans: $\mathrm{AsH}_{3}<\mathrm{PH}_{3}<\mathrm{NH}_{3}$
Category: Medium Section: 10.2
97. Explain why CO_{2} is nonpolar, but OCS is polar.

Ans: In CO_{2} the two bond moments point in opposite directions and are of equal magnitude. Therefore, they cancel. In OCS, even though the two bond moments point in opposite directions, they are not of the same magnitude and so do not cancel.
Category: Medium Section: 10.2
98. The $\mathrm{N}-\mathrm{N}-\mathrm{H}$ bond angles in hydrazine $\mathrm{N}_{2} \mathrm{H}_{4}$ are 112°. What is the hybridization of the nitrogen orbitals predicted by valence bond theory?
Ans: sp^{3}
Category: Medium Section: 10.4
99. N, N-diethyl- m-tolumide (DEET) is the active ingredient in many mosquito repellents.

DEET

How many sigma bonds and pi bonds are contained in a DEET molecule?
Ans: 31 sigma bonds and 4 pi bonds
Category: Medium Section: 10.5
100. Ibuprofen is used as an analgesic for the relief of pain, and also to help reduce fever.

ibuprofen
How many sigma bonds and pi bonds are contained in a ibuprofen molecule?
Ans: 33 sigma bonds and 4 pi bonds
Category: Medium Section: 10.5
101. Indicate the number of π-bonds in $\mathrm{C}_{2} \mathrm{H}_{4}$.

Ans: 1
Category: Medium Section: 10.5
102. Indicate the number of π-bonds in $\mathrm{C}_{2} \mathrm{H}_{6}$.

Ans: 0
Category: Medium Section: 10.5
103. Indicate the number of π-bonds in $\mathrm{N}_{2} \mathrm{H}_{2}$.

Ans: 1
Category: Medium Section: 10.5
104. According to the VSEPR theory, the geometrical structure of PF_{5} is

Ans: trigonal bipyramidal
Category: Medium Section: 10.1
105. Draw a Lewis structure for PF_{5} that shows the correct atom arrangement predicted by VSEPR theory.

Ans: $\quad: \underset{F}{F}$
Category: Medium Section: 10.1
106. What bond angles are predicted by VSEPR theory for the $\mathrm{F}-\mathrm{P}-\mathrm{F}$ bonds in PF_{5} ?

Ans: $90^{\circ}, 120^{\circ}$, and 180°
Category: Medium Section: 10.1
107. According to the VSEPR theory, will the molecule PF_{5} will be polar or nonpolar?

Ans: nonpolar
Category: Medium Section: 10.2
108. How does the geometrical structure of PF_{5} differ from that of IF_{5} ?

Ans: PF_{5} is trigonal bipyramidal, whereas IF_{5} is square pyramidal
Category: Medium Section: 10.1
109. Ozone $\left(\mathrm{O}_{3}\right)$ is an allotropic form of oxygen. Use VSEPR theory to predict the shape of the ozone molecule.
Ans: Bent
Category: Medium Section: 10.1
110. Which should have the longer bond, B_{2} or $\mathrm{B}_{2}{ }^{-}$?

Ans: B_{2}
Category: Medium Section: 10.7
111. Which should have the longer bond, O_{2} or $\mathrm{O}_{2}{ }^{+}$?

Ans: O_{2}
Category: Medium Section: 10.7
112. Complete the following table.

Hybrid type a b $\mathrm{c} s p^{3}$ $\mathrm{c} \overline{\mathrm{d}} \overline{s p^{2}}$	Geometry of electron pairs linear
e	trigonal bipyramidal octahedral

Ans:

Hybrid type	Geometry of electron pairs
a $s p$	linear
b $s p^{3}$	tetrahedral
c $s p^{3} d$	trigonal bipyramidal
$\mathrm{d} s p^{3} d^{2}$	octahedral
e $s p^{2}$	trigonal planar

Category: Medium Section: 10.4
113. In benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$, what is the hybridization of each carbon atom?

Ans: $s p^{2}$
Category: Medium Section: 10.8
114. Which of the following molecules should be polar?
a. $\mathrm{CH}_{3} \mathrm{OH}$
b. $\mathrm{H}_{2} \mathrm{O}$
c. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

Ans: All of these are polar molecules.
Category: Medium Section: 10.2
115. According to the VSEPR theory, all of the electron pair-electron pair repulsions about the central atom in PC_{3} are of equal magnitude.
Ans: False Category: Medium Section: 10.1
116. The BrF_{5} molecule has polar bonds and has a net dipole moment.

Ans: True Category: Medium Section: 10.2
117. Pi bonds are covalent bonds in which the electron density is concentrated above and below a plane containing the nuclei of the bonding atoms.
Ans: True Category: Easy Section: 10.5
118. The hybridization of B in the BF_{3} molecule is $s p^{3}$.

Ans: False Category: Medium Section: 10.4
119. A bonding molecular orbital is of lower energy (more stable) than the atomic orbitals from which it was formed.
Ans: True Category: Medium Section: 10.6
120. A homonuclear diatomic molecule is a molecule composed of three atoms of the same element.
Ans: False Category: Easy Section: 10.7
121. A species with a bond order of $1 / 2$ may be stable.

Ans: True Category: Easy Section: 10.7
122. More energy is required to break a bond with an order of $3 / 2$ than is required to break a bond of order 2.
Ans: False Category: Easy Section: 10.7

