2010

EECE 310 Lab Report for Experiment 10 MOS TRANSISTOR

Prepared and done by Noor S Afif 201001275 nsa45@aub.edu.lb Section 3 Bench 5

> Noor S Afif American University of Beirut 1/5/2011

Table of Contents

List of Figures and Tables

- I. Objectives
- II. Lab Equipment used
- III. Lab tools used
- IV. Components used
- V. Experimental Procedure and Discussion
 - A. MOSFET Characteristics
 - A1. Circuit Diagrams
 - A2. Detailed experimental procedure i-Measurement settings ii-Assumptions.
 - A3. Measurements and Results including i-Data ii-Compare and calculate the error
 - B. MOSFET As a Voltage-Controlled Resistor
 - B1. Circuit Diagrams
 - B2. Detailed experimental procedure i-Measurement settings ii-Assumptions.
 - B3. Measurements and Results including i-Table V_{GS} - V_T =2V ii-Table V_{GS} - V_T =3V
 - B4. Discussion i-Curve for I_D versus V_{DS} ii-Find the slope iii-Find the resistance (Table)
 - C. MOSFET Logic Gate
 - C1. Circuit Diagrams
 - C2. Detailed experimental procedure i-Measurement settings ii-Assumptions.
 - C3. Measurements and Results i-Table C-1 ii-Table C-2
 - C4. Discussions
 - i- Discussion questions.
 - ii- V_{OUT} Versus V_{IN1}
 - D. MOSFET as an Amplifier
 - D1. Circuit Diagrams
 - D2. Detailed experimental procedure i-Measurement settings ii-Assumptions.
 - D3. Measurements and Results

i-Gain and Voltage measurement. ii- Measurement error.

D4. Discussions

i- Discussion questions.

E. MOSFET as a Current Source.

E1. Circuit Diagrams

E2. Detailed experimental procedure i-Measurement settings ii-Assumptions.

E3. Measurements and Results

i- R_D , I_D and V_{DS}

E4. Discussions

i-Discussion questions

- VI. References
- VII. Mistakes and Problems faced in the lab
- VIII. Last sheet of the report containing my signature

List of Figures and Tables

\succ	Table of Resistors Used	p.5
\succ	Fig1.MOSFET Characteristics	p.7
\succ	Fig2.Voltage Controlled Resistor	p.8
\succ	Table V_{GS} - V_T =2V	p.9
\succ	Table V_{GS} - V_T =3V	p.9
\succ	Curve for I_D versus V_{DS} when V_{GS} - V_T =2V	p.9
\succ	Curve for I_D versus V_{DS} when V_{GS} - V_T =3V	p.10
\succ	R _{DS} Table	p.10
\succ	Fig 3. MOSFET as a Logic Gate	p.11
\triangleright	Truth table C-1	p.11
\triangleright	Table C-2	p.12
\triangleright	Graph V _{OUT} Versus V _{IN1}	p.12
\triangleright	Fig 4-a,b,c MOSFET as an Amplifier	p.13
\succ	Table of Voltages and Gain	p.13
\triangleright	Table of DC values	p.14
\triangleright	Fig 5-a,b MOSFET as a current source.	p.14
\triangleright	Table R_D , I_D and V_{DS}	p.15
\succ	Graph I_D as a function of R_D	p.15
\triangleright	Graph I_D as a function of V_{DS}	p.15

I. Objectives

The purpose of the following experiment is to investigate the characteristics of a Metal-Oxide-Semiconductor Field-Effect Transistor, also known as a MOSFET. Another purpose of this lab is to study a MOSFET's applications as a:

- Voltage-Controlled Resistor.
- ➢ Logic Gate.
- > Amplifier.
- Current Source.

II. Lab Equipment Used

- DDM: Digital Device Multimeter.
- ➢ Breadboard.
- Function Generator.
- Oscilloscope.
- The Tektronix PS 280-Power Supply

III. Lab Tools and Components Used

- ➢ Wire Stripper
- ➢ Wire Cutter

IV. Components Used

Theoretical Value	Measured Value	% error
100 Ω	100.39Ω	0.39
220 Ω	219Ω	0.45
330 Ω	335Ω	1.51
470 Ω	476Ω	1.27
560 Ω	550Ω	1.78
680 Ω	660Ω	2.94
820 Ω	808Ω	2.68
1 kΩ	1.007kΩ	0.7
3.3 kΩ	3.2kΩ	3.03
4.7 kΩ	4.678kΩ	0.468
10 kΩ	9.86kΩ	1.4
15 kΩ	14.98kΩ	0.134

- ➢ Connection Wires.
- ➤ Capacitors of value 10 uF.
- ➢ BS170 MOSFET

V. Experimental Procedure and Discussion

A. MOSFET Characteristics

A1.Circuit Diagrams

A2. Detailed Experimental Procedure

i-Connect the circuit of Fig 1 on the breadboard, use a DDM to measure I_D .

ii-The connections allow us to determine the characteristics of the MOSFET, specifically the transconductance parameter k, and the threshold voltage V_T. Those 2 characteristics allow us to calculate the drain current in saturation. Where I_D=(k/2)(V_{GS}-V_T)² when V_{GS}> V_T and V_{DS} > V_{GS}-V_T

In the given case $V_{DS} = V_{GS}$ and since V_T is positive in the current MOSFET, the transistor is in saturation whenever $V_{GS} > V_T$.

In order to calculate two variables we need two measurements. We measure V_{GS} when $I_D=10$ mA and another time when $I_D=25$ mA.

A3.Measurements and Results

i- Starting with V_{GG} =0.5 V (on the Tektronix PS 280) slowly increase its value until I_{D} =10 mA(visible on the DDM) that occurs when V_{GS} =2.16V Continue increasing until I_{D} =25 mA which happens when V_{GS} =2.43V Solve for K and V_T using the 2 equations: $10=(k/2)(2.16-V_T)^2$ $25=(k/2)(2.43-V_T)^2$ Which yields to k=925.25 mA/V² and V_T=2V

ii - Calculation of error percentage. Increase V_{GG} till I_{D=}40 mA, which yields a measured value of V_{GS}=2.6V Meanwhile, according to the formula $V_{GS}=V_T+ rad(2 I_D/k)$ Calculated V_{GS}=2.29 V.

Error Percentage= (2.29-2.6)*100/2.29=13 %

B. MOSFET as a Voltage-Controlled Resistor

B2. Detailed experimental procedure

Using connections of Fig.2 and the value of $V_T=2V$ (calculated above) set $V_{GG}=V_T+2V$

- i- Using the power supply, apply V_{DS} , and measure I_D using a DDM.
- ii- Since the gate current of the MOSFET=0, V_{GS} - V_T =2V

D5. measuremen	B5: measurements and results		
i-Table V _{GS} -V _T =2V			
V _{GS} -V	$V_{\rm T}=2{\rm V}$		
$V_{DS}(V)$	I _D (mA)		
0.1	6.67		
0.2	13.4		
0.3	21.2		

B3. Measurements and Results

ii-Table V_{GS}-V_T=3V

$V_{GS}-V_T=3V$		
$V_{DS}(V)$	I _D (mA)	
0.1	10.8	
0.2	14.65	
0.3	23.65	

B4. Discussion

i-Curve for $\,I_D$ versus V_{DS}

- ii-Find the slope
- a- $V_{GS}-V_T=2V$ Slope=(21.2-6.67)/0.2=72.45 mA/V
- b- V_{GS}-V_T=3V Slope=(23.65-10.8)/0.2=64.25 mA/V

iii-Find	the	resistance	(Table)	
			(/	

$V_{GS}-V_T(V)$	$R_{DS}(\Omega)$
2	13.80
3	15.56

 R_{DS} is not constant but depends on V_{OV} therefore the MOSFET in this case is a voltage controller resistance, where $R_D = V_{DS/} \, I_D = 1/(k \; V_{OV})$

And since V and I are related by a straight line, it is called linear, or ohmic(Resistance).

C. MOSFET Logic Gate

C1. Circuit Diagrams

C2. Detailed Experimental Procedure

i-Connect the circuit of Fig 3, measure V_{IN1} , V_{IN2} & V_{OUT} using a DDM ii- This circuit implements a logic gate; we will determine in this part of the experiment the logic function of this gate and study its characteristics. There are two inputs IN1 and IN2, and one output OUT.

To build the truth table of this gate, we apply all possible combinations of inputs, and observe the output. Start with IN1 = logic 0 and IN2 = logic 0. To get a logic 0, we will connect the input nodes to ground. The value of the output in this case corresponds to logic 1.

C3. Measurements and Results

Apply logic 1 at IN1, and logic 0 at IN2, and observe the output. Repeat for IN1 = logic 0, IN2 = logic 1, and for IN1 = logic 1 and IN2 = logic 1. i-Table C-1

IN1 (Logic)	IN2(Logic)	Out(Logic)	$V_{IN1}(V)$	$V_{IN2}(V)$	$V_{OUT}(V)$
0	0	1	0.0	0.0	5.03
0	1	0	0.0	5	0.01
1	0	0	5.02	0.0	0.012
1	1	0	5.012	5.03	0.009

From the truth table indicates that the logic function of this gate is a NOR gate.

$V_{IN1}(V)$	$V_{OUT}(V)$	MOSFET Region	Out(Logic)
0	4.995	Cut Off	1
0.8	4.995	Cut Off	1
1.6	4.993	Cut Off	1
2.4	0.31	Triode	0
3.2	0.05	Triode	0
4.4	0.026	Triode	0

ii-Table C-2

C4. Discussions

i- The values of high that correspond to logic one are around 5, meanwhile the values of low that correspond to logic zero are around 0 or values in mV

When the MOSFET is in the ohmic(linear) region the output is low, since the MOSFETs acts as voltage controlled resistors. It is clear in the figure that a change in R_D would induce a change in the opposite sense in the MOSFET resistance behavior, and also in $V_{DS} = V_{OUT}$. In conclusion increasing the resistance would induce a Low (0 logic) output.

At $V_{IN1}=2.4$ V the output switches. That occurs when $V_{IN1}=V_{GS} > V_T$

D. MOSFET as an Amplifier <u>D1.Circuit Diagrams</u>

D2. Detailed experimental procedure

i-Connect the figure 4-a with the voltage source equal to a 100mV pk-pk 10KHz sin signal.

ii-Use an oscilloscope to measure Vo, voltage and current gain.

i-	Value
V _S pk-pk	103mV
V _I pk-pk	74mV
V _O pk-pk	16mV
Gain (V/V)	0.216

The current gain is 1, since it is the same node.

ii- Measurement Calculation.

DC Values	Measured	Calculated	Error %
I _D	2.59 mA	0	1
V _{GS}	4.823V	5	3.669
V _{DS}	6.93 V	7	1.01

D4.Discussion

The presence of a capacitance limits the MOSFET.

Where at low frequencies, the gain decreases due to the increase of the capacitors performance, which is similar to an open circuit behavior. C2 affects the voltage output in reducing it, and thus reducing the gain.

Meanwhile at high frequencies, the gain increases, since the capacitance acts a short circuit.

The voltage gain of a BJT is lower, than that of an amplifier.

E. MOSFET as a Current Source.

E1, Circuit Diagrams

E2.Detailed Experimental Procedure

i-Connect fig 5-a , which is similar but not a BTJ, this circuit doesn't use a Zener Diode. ii-Use the values of K and V_T found previously.

E3.Measurements and results

$1-R_D$, I_D and V_{DS}				
(mA)	$V_{DS}(V)$			
85	9.9			
83	7.9			
81	6.8			
8	5.7			
78	4.4			
76	3.56			
7	2.54			
67	1.17			
63	0.25			
	(mA) 85 83 81 8 78 76 7 67 63			

E4.Discussions

 I_{D} is not constant but is approximately stable when R is between 0 and 330 ohms.

 I_{D} as a function of V_{DS}

The current is approximately constant when V varies between 9.9 and 5.7 V, this is when V_{DS} is in Saturation, since it is somehow independent of voltage at this region.

R_{o=}1/slope=(9.9-0.25)/(9.85-9.63)=43.863 ohms

VI-References

The lab manual in addition to the in Lab.

VII-Mistakes and Problems faced in the Labs

Me and my fellow classmates were bothered a lot during the lab, as usual, the equipment is old and worn out therefore tend to malfunction.

For example, the instructor had to change our oscilloscope twice in order to get an acceptable reading.

In addition to the fact that the transformer wires were loose, and some didn't even have wires, we had to wait to attach a wire or 2 sometimes, which would fall back shortly after.

VIII Signature

I HAVE NEITHER GIVEN NOR RECEIVED AID ON THIS REPORT NOR HAVE I CONCEALED ANY VIOLATION OF THE AUB STUDENT CODE OF CONDUCT.

