Lecture 11 Signals and Communications

November 11, 2009

AUB Department of Electrical and Computer Engineering

Today, we are going to talk about

- What are the features of a Digital communication system (DCS)?
- Why "digital" instead of "analog"?
- Reduction of Bit Error Rate
- Classification of signals

Block diagram of a digital communication system

Block diagram of a digital communication system

Transmitter

Receiver

Digital communication system ...

- Important features of a DCS:
 - Transmitter sends a waveform from a finite set of possible waveforms during a limited time
 - Channel distorts, attenuates the transmitted signal and adds noise to it.
 - Receiver decides which waveform was transmitted from the noisy received signal
 - Probability of erroneous decision is an important measure for the system performance

A simple procedure

• Binary Symmetric channel

 \geq p is the probability of error. That is the probability of sending a 0 and receive a 1 or the probability of sending a 1 and receiving a zero.

>p is usually very small. Let p=0.01. That is, a possibility of 1 bit error in transmitting 100 bits. Bit Error rate=BER=10⁻²

Procedure:

- 1. Repeat at the transmitter the same bit 5 times
- 2. The receiver uses the majority of bits in a sequence of 5 digits decision rule.

Calculate the new Bit Error Rate

In transmitting 00000, we may receive

01000	10000	11000
01001	10001	11001
01010	10010	11010
01011	10011	11011
01100	10100	11100
01101	10101	11101
01110	10110	11110
01111	10111	11111
	01000 01001 01010 01011 01100 01101 01110 01111	01000100000100110001010101001001011100110110010100011011010101110101100111110111

When do we make an error

- 3 bits are in error: Total number = 10
- 4 bits are in error: Total number = 5
- 5 bits are in error: Total number = 1

```
The new BER: 10ppp(1-p)(1-p)
+5pppp(1-p)
+ppppp
In numerical value with p=0.01, the new BER= 10^{-5}
```


- Deterministic and random signals
 - Deterministic signal: No uncertainty with respect to the signal value at any time.
 - Random signal: Some degree of uncertainty in signal values before it actually occurs.
 - Thermal noise in electronic circuits due to the random movement of electrons
 - Reflection of radio waves from different layers of ionosphere

Classification of signals ...

• Periodic and non-periodic signals

AUB Department of Electrical and Computer Engineering

Random process

 A random process is a collection of time functions, or signals, corresponding to various outcomes of a random experiment. For each outcome, there exists a deterministic function, which is called a sample function or a realization.

