Lecture 8 Introduction to Complex Numbers

October 21, 2010

AUB Department of Electrical and Computer Engineering

Definitions

- The set of all complex numbers is usually denoted by C .
- Complex numbers are usually written in the form: z=a+jb
- where a and b are real numbers, and j is the imaginary unit, which has the property $j^{2}=-1$. The real number a is called the real part of the complex number, and the real number b is the imaginary part.
- Example: $3+\mathrm{j} 2$ is a complex number, with real part 3 and imaginary part 2. If $z=a+b i$, the real part a is denoted $\operatorname{Re}(z)$ or $\mathfrak{R}(z)$, and the imaginary part b is denoted $\operatorname{Im}(z)$ or $\mathfrak{I}(z)$.

Definitions: a+jb

- If $b=0$, the complex number wil thenbe a real number.
- If $a=0$, the Complex numbers are then called imaginary numbers.

Notation

- In some disciplines (in particular, electrical engineering, where i is a symbol for current), the imaginary unit i is instead written as j, so complex numbers are sometimes written as $a+b j$ or $a+j b$.

Equality of Complex Numbers

- Two complex numbers are said to be equal if and only if their real parts are equal and their imaginary parts are equal.

$$
x+j y=2+j 5 . \text { This implies, } x=2 \text { and } y=5
$$

Operations on Complex Numbers: Addition

- Addition

$$
(a+j b)+(c+j d):=(a+c)+j(b+d)
$$

- Multiplication

$$
\begin{aligned}
(a+j b)(c+j d): & =\left(a c+j a d+j b c+j^{2} b d\right) \\
& =(a c-b d)+j(b c+a d)
\end{aligned}
$$

- Division

$$
\begin{aligned}
\frac{a+b i}{c+d i} & =\frac{(a+b i)(c-d i)}{(c+d i)(c-d i)}=\frac{a c+b c i-a d i+b d}{(c+d i)(c-d i)} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+\left(\frac{b c-a d}{c^{2}+d^{2}}\right) i
\end{aligned}
$$

Conjugate

The conjugate of $z=x+j y$ is $x-j y$ and written as or z^{*}.

Example: The conjugate of $3-\mathrm{j} 4$ is $3+\mathrm{j} 4$

The complex plane

A complex number can be viewed as a point or position vector in a two-dimensional Cartesian coordinate system called the complex plane or Argand diagram, named after Jean-Robert Argand. The numbers are conventionally plotted using the real part as the horizontal component, and imaginary part as vertical .

Polar form

From above:
The real part: $a=r \cos (\varphi)$
The imaginary part: $b=r \sin (\varphi)^{\rho}$
\Re
$z=r(\cos \varphi+j \sin \varphi)=r e^{j \varphi}$
r is called the magnitude (Envelope) and φ is called the argument or phase of a complex number z.

Computation of r and φ
 The magnitude and Argument of z are given by:

$$
\begin{aligned}
& r=|z|=\sqrt{a^{2}+b^{2}} \\
& \varphi=\tan ^{-1}\left(\frac{b}{a}\right)
\end{aligned}
$$

Operations in polar form

- Multiplication and division have simple formulas in polar form:

$$
\begin{aligned}
& \left(r_{1} e^{i \varphi_{1}}\right) \cdot\left(r_{2} e^{i \varphi_{2}}\right)=\left(r_{1} r_{2}\right) e^{i\left(\varphi_{1}+\varphi_{2}\right)} \\
& \frac{\left(r_{1} e^{i \varphi_{1}}\right)}{\left(r_{2} e^{i \varphi_{2}}\right)}=\left(\frac{r_{1}}{r_{2}}\right) e^{i\left(\varphi_{1}-\varphi_{2}\right)}
\end{aligned}
$$

Example

$z_{1}=3+j 4$ and $z_{2}=3+j 3$

In Polar form:
$z_{1}=5<53.13^{\circ}$ and $z_{2}=4.24<45^{\circ}$
Computation in algebraic form:

$$
\begin{aligned}
z_{1} z_{2} & =(3+j 4)(3+j 3)=(9-12)+j(9+12)=-3+j 21 \\
z_{1} z_{2} & =\left(5<53.13^{0}\right)\left(4.24<45^{0}\right)=21.213<98.13^{0} \\
& =21.213\left(\cos 98.13^{0}+j \sin 98.13^{0}\right) \\
& =21.213(-0.14142+j 0.9899)=-3+j 21
\end{aligned}
$$

References

- Burton, David M. (1995), The History of Mathematics (3rd ed.), New York: McGraw-Hill, ISBN 978-0-07-009465-9
- Katz, Victor J. (2004), A History of Mathematics, Brief Version, Addison-Wesley, ISBN 978-0-321-16193-2
- Nahin, Paul J. (1998), An Imaginary Tale: The Story of (hardcover ed.), Princeton University Press, ISBN 0-691-02795-1
- H.-D. Ebbinghaus ... (1991), Numbers (hardcover ed.), Springer, ISBN 0-387-97497-0

