BUSS 230: Managerial Economics

Fall 2011-2012
 Regression Assignment

ANSWER KEY
Sections 1 to 6

Question 1

a. $\quad \beta_{2}$ is the output elasticity of labor. It measures the percentage change in output due to a percentage change in labor.
β_{3} is the output elasticity of capital. It measures the percentage change in output due a to a percentage change in capital.
b.

Regression Analysis

R^{2}	0.688
Adjusted	
R^{2}	0.668
R	0.830
Std. Error	0.217
33	observations
2	predictor variables
LNQ	is the dependent variable

ANOVA
table

Source	$S S$	$d f$	$M S$	F	p-value
Regression	3.1123	2	1.5561	33.12	$2.55 \mathrm{E}-08$
Residual	1.4094	30	0.0470		
Total	4.5217	32			

Regression output				confidence interval		
			std.	t	$p-$	95%
variables	coefficients	error	$(d f=30)$	value	lower	upper
intercept	-0.1287	0.5461	-0.236	.8153	-1.2440	0.9867
LNL	0.5590	0.8164	0.685	.4988	-1.1084	2.2264

LNK	0.4877	0.7039	0.693	.4937	-0.9498	1.9252

c. We can use p -values to test the significance of the coefficients β_{2} and β_{3} at the 5% level.
For $\beta_{2}: \mathrm{p}$-value $=0.49>0.05=\alpha$. So we do not reject the null that β_{2} is different from zero.
Conclusion: β_{2} is insignificant
For $\beta_{3}: \mathrm{p}$-value $=0.49>0.05=\alpha$. So we do not reject the null that β_{3} is different from zero.
Conclusion: β_{3} is insignificant.
d. For the joint significance of the variables in this regression, we need to use the p-value of the F-test.
p-value of F-test $=2.55 \times 10^{-8}<0.05$. So we reject the null that the variables in this regression are jointly insignificant. Conclusion: the variables in this regression are jointly significant.
e. The R^{2} of this regression is 68% and is reasonably high. This regression exhibits good fir. Note that R^{2} can be interpreted as 68% of the variation in log quantity being due to variation in log labor and log capital.
f. This production function exhibits increasing returns to scale. This is due to the fact that $\hat{\beta}_{2}+\hat{\beta}_{3}=0.5590+0.4877>1$.
g. The variables are individually insignificant but jointly highly significant. This is not very intuitive and might suggest the presence of multicollinearity.
h. We can compute the correlation between the two independent variables $\ln (K)$ and $\ln (\mathrm{L})$. The correlation coefficient is 0.98 and this indicates the presence of multicollinearity.

Question 2

a. Due to the law of demand, β_{12}, β_{22} and β_{32} are expected to be negative. The signs of β_{13}, β_{23} and β_{33} depend on whether we expect the good to be an inferior or normal good. Meat is expected to be a normal good so β_{13} is expected to be positive.
Fruits and vegetables are also expected to be normal goods so β_{23} is expected to be positive.
It can be argued that cereals and bakery products are either a normal or inferior good. Therefore, β_{33} can be either positive or negative.
b. $\quad \beta_{12}, \beta_{22}$ and β_{32} are, respectively, the price elasticities of demand for meat, fruits and vegetables and cereals and bakery products.
β_{13}, β_{23} and β_{33} are, respectively, the income elasticity of demand for meat, fruits and vegetables and cereals and bakery products.
c.

Regression Analysis

R^{2}	0.623
Adjusted	
R^{2}	0.595
R	0.789
Std. Error	0.394
30	observations
2	predictor variables
LNq 1	is the dependent variable

ANOVA table					
Source	SS	$d f$	$M S$	F	p-value
Regression	6.9437	2	3.4719	22.33	$1.89 \mathrm{E}-06$
Residual	4.1977	27	0.1555		
Total	11.1415	29			

Regression output					confidence interval	
variables	coefficients	std. error	$\begin{array}{r} t \\ (d f=27)^{t} \end{array}$	p-value	95% lower	$\begin{gathered} 95 \% \\ \text { upper } \end{gathered}$
intercept	1.0174	1.3541	0.751	4590	-1.7611	3.7958
				$1.05 \mathrm{E}-$		
LNy	1.4339	0.2288	6.267	06	0.9644	1.9033
LNp1	-0.5670	0.2149	-2.639	. 0136	-1.0079	-0.1261

Regression Analysis

R^{2}	0.541
Adjusted	
R^{2}	0.507
R	0.736
Std. Error	0.451
30	observations
2	predictor variables
LNq 2	is the dependent variable

ANOVA
table

Source	$S S$	$d f$	$M S$	F	p-value
Regression	6.4654	2	3.2327	15.92	$2.71 \mathrm{E}-05$
Residual	5.4830	27	0.2031		

Regression output				confidence interval		
		std.	t	p -	95%	95%
variables	coefficients	error	$(d f=27)$	value	lower	upper
intercept	2.4628	1.4529	1.695	.1016	-0.5183	5.4439
LNp2	-0.6482	0.1875	-3.456	.0018	-1.0330	-0.2634
LNy	1.1435	0.2612	4.378	.0002	0.6075	1.6794

Regression Analysis

R^{2}	0.915
Adjusted	
R^{2}	0.909
R	0.956
Std. Error	0.187
30	observations
2	predictor variables
LNq 3	is the dependent variable

ANOVA
table

Source	$S S$	$d f$	$M S$	F	p-value
Regression	10.1149	2	5.0575	145.07	$3.60 \mathrm{E}-15$
Residual	0.9413	27	0.0349		
Total	11.0562	29			

Regression output					confidence interval	
variables	coefficients	std. error	$\begin{array}{r} t \\ (d f=27) \end{array}$	p-value	95% lower	95% upper
				$1.60 \mathrm{E}-$		
intercept	4.8696	0.5467	8.908	09	3.7479	5.9913
				$1.87 \mathrm{E}-$		
LNp3	-0.9639	0.0653	-14.769	14	-1.0978	-0.8300
				1.19E-		
LNy	0.8713	0.1082	8.050	08	0.6492	1.0934

d. For β_{12}, p -value $=0.0136<0.05=\alpha$, therefore we reject the null that β_{12} is insignificant (i.e. it is significant)

For β_{13}, p -value $=1.05 \times 10^{-6}<0.05=\alpha$, therefore we reject the null that β_{13} is insignificant (i.e. it is significant)

For β_{22}, p -value $=0.0018<0.05=\alpha$, therefore we reject the null that β_{22} is insignificant (i.e. it is significant)

For β_{23}, p -value $=0.0002<0.05=\alpha$, therefore we reject the null that β_{23} is insignificant (i.e. it is significant)

For β_{32}, p-value $=1.87 \times 10^{-14}<0.05=\alpha$, therefore we reject the null that β_{32} is insignificant (i.e. it is significant)
For β_{33}, p-value $=1.19 \times 10^{-8}<0.05=\alpha$, therefore we reject the null that β_{33} is insignificant (i.e. it is significant)
e. All three regressions have a high R^{2} ranging from 54% to 91%. The best "fit" corresponds to the third demand equation (that of cereals and bakery with an R^{2} of around 91%)

Question 3

a. The portfolio manager is postulating that S\&P500 prices follow a linear (or secular) trend model with seasonal variation.
b. See excel output.

Regression Analysis

R^{2}	0.820
Adjusted R^{2}	0.814
R	0.906
Std. Error	198.928
123	observations
4	predictor variables
P	is the dependent variable

ANOVA
table

Source	$S S$	$d f$	$M S$	F	p-value
Regression	$21,330,410.8066$	4	$5,332,602.7017$	134.76	$4.98 \mathrm{E}-43$
Residual	$4,669,552.1591$	118	$39,572.4759$		
Total	$25,999,962.9657$	122			

Regression output				confidence interval			
variables	coefficients	$s t d$. $e r r o r$	$t(d f=118)$	p-value	95% lower	epper	
intercept	-26.4871	47.9633	-0.552	.5818	121.4675	68.4933	
t	11.7296	0.5053	23.214	$4.24 \mathrm{E}-$	46	10.7290	12.7302
D1	-5.0832	50.9497	-0.100	.9207	105.9774	95.8110	
D2	-2.9312	50.9472	-0.058	.9542	103.8205	97.9581	
D3	-20.1559	50.9497	-0.396	.6931	121.0502	80.7383	

c. The parameter estimate for b is positive. We need to test for the significance of b at the 5% to establish whether a time trend exists. p-value $=8.24 \times 10^{-48}<0.05=\alpha$, therefore we reject the null that b is insignificant (i.e. it is significant). Therefore, b is positive and significant and there is evidence of a time trend in S\&P500 prices.
d. p -value of $\mathrm{c} 1=0.9207>0.05$, we do not reject the null that c 1 is insignificant.
p -value of $\mathrm{c} 2=0.9542>0.05$, we do not reject the null that c 2 is insignificant.
p-value of $\mathrm{c} 3=0.6937>0.05$, we do not reject the null that c 2 is insignificant.
Given that all three seasonal dummy variables are insignificant, we conclude that there is no evidence of seasonality in S\&P500 prices.
e. Forecast of S\&P500 for 2010Q4:
$P(2010 Q 4)=-26.4871+11.72 \times 124=1428.80$
f. 3 quarter MA forecast is: 1113.78 , while 5 quarter moving average forecast is: 1102.704
g. The adjusted closing price on 31 December 2010 is $1,257.64$. The best forecasting method is the 3 quarter moving average as it is the closest to the actual value that materializes in December 2010.

Question 4

a.

b. The correlation between E-commerce retail sales and business inventories is 0.879 . This is a high correlation coefficient indicating a strong positive linear relationship between the variables.
c. Yes, a seasonal pattern is expected in both variables. Sales are expected to increase during the holiday season (In Christmas, the $4^{\text {th }}$ quarter of the year) while business are expected to hold higher inventories in the quarter preceding Christmas ($3^{\text {rd }}$ quarter) in anticipation for the increase in sales.
d. and \mathbf{e}. Denote business inventories by and E-commerce retail sales by X_{t} and inventories by Y_{t}. The following 2 equations can be estimated to check for a time trend and seasonal pattern in sales:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{t}}=\mathrm{a}+\mathrm{b} t+\mathrm{c}_{1} \mathrm{D}_{1}+\mathrm{c}_{2} \mathrm{D}_{2}+\mathrm{c}_{3} \mathrm{D}_{3}+\mathrm{e}_{\mathrm{t}} \\
& \mathrm{Y}_{\mathrm{t}}=\mathrm{a}+\mathrm{b} t+\mathrm{c}_{1} \mathrm{D}_{1}+\mathrm{c}_{2} \mathrm{D}_{2}+\mathrm{c}_{3} \mathrm{D}_{3}+\mathrm{e}_{\mathrm{t}}
\end{aligned}
$$

Where:
$t=1,2, \ldots, 44$.
$\mathrm{D}_{1}=1$ if t is quarter 1
$\mathrm{D}_{2}=1$ if t is quarter 2
$\mathrm{D}_{3}=1$ if t is quarter 3
Estimating the 2 equations yields:

Regression Analysis

R^{2}	0.691
Adjusted R^{2}	0.659
R	0.831
Std. Error	77666.022
44	observations
4	predictor variables

BUSSINESSINVENTORIES is the dependent variable

ANOVA
table
Source
Regression
Residual
Total

Regression output \qquad confidence interval

variables	coefficients	std. error	$t(d f=39)$	$\begin{array}{r} p- \\ \text { value } \end{array}$	95\% lower	95\%
				1.85E-		
intercept	1,090,454.5017	30,433.8979	35.830		1,028,896.1334	1,152,01
time	8,617.3960	925.6456	9.310	11	6,745.1011	10,48
Q1	-2,206.5778	33,129.8368	-0.067	. 9472	-69,217.9973	64,80
Q2	-3,599.6102	33,168.6079	-0.109	. 9141	-70,689.4515	63,49
Q3	-3,732.0972	33,233.1257	-0.112	. 9112	-70,952.4382	63,48

Regression Analysis

R^{2}	0.965
Adjusted R^{2}	0.962
R	0.982
Std. Error	2324.924
44	observations
4	predictor variables
$\mathrm{E}-$	is
COMMERCERETAILSALES	is the dependent variable

ANOVA

table	SS	$d f$	$M S$	F	p-value
Source	$5,848,914,539.6000$	4	$1,462,228,634.9000$	270.52	$7.16 \mathrm{E}-28$

Which shows that business inventories have a positive time trend and no clear seasonal pattern (time trend is significant while seasonal dummy variables are not) whereas sales exhibit both a positive and significant time trend and a significant seasonal pattern (both the time trend and seasonal dummies are significant as evidenced by the very small p-vales on the time trend and seasonal dummy variables).

