

BUSS 230: Managerial Economics Fall 2011-2012 Regression Assignment ANSWER KEY Sections 1 to 6

Question 1

a. β_2 is the output elasticity of labor. It measures the percentage change in output due to a percentage change in labor.

 β_3 is the output elasticity of capital. It measures the percentage change in output due a to a percentage change in capital.

b.

Regression Analysis

R²	0.688
Adjusted	
R ²	0.668
R	0.830
Std. Error	0.217
33	observations
2	predictor variables
LNQ	is the dependent variable

ANOVA table

lable					
Source	SS	df	MS	F	p-value
Regression	3.1123	2	1.5561	33.12	2.55E-08
Residual	1.4094	30	0.0470		
Total	4.5217	32			

Regression ou	utput				confidence	e interval
		std.	t	р-	95%	95%
variables	coefficients	error	(df=30)	value	lower	upper
intercept	-0.1287	0.5461	-0.236	.8153	-1.2440	0.9867
LNL	0.5590	0.8164	0.685	.4988	-1.1084	2.2264

c. We can use p-values to test the significance of the coefficients β_2 and β_3 at the 5% level.

For β_2 : p-value = 0.49>0.05= α . So we do not reject the null that β_2 is different from zero.

Conclusion: β_2 is insignificant

For β_3 : p-value = 0.49>0.05= α . So we do not reject the null that β_3 is different from zero.

Conclusion: β_3 is insignificant.

d. For the joint significance of the variables in this regression, we need to use the p-value of the F-test.

p-value of F-test = $2.55 \times 10^{-8} < 0.05$. So we reject the null that the variables in this regression are jointly insignificant. Conclusion: the variables in this regression are jointly significant.

- e. The R^2 of this regression is 68% and is reasonably high. This regression exhibits good fir. Note that R^2 can be interpreted as 68% of the variation in log quantity being due to variation in log labor and log capital.
- **f.** This production function exhibits increasing returns to scale. This is due to the fact that $\hat{\beta}_2 + \hat{\beta}_3 = 0.5590 + 0.4877 > 1$.
- **g.** The variables are individually insignificant but jointly highly significant. This is not very intuitive and might suggest the presence of multicollinearity.
- **h.** We can compute the correlation between the two independent variables ln(K) and ln(L). The correlation coefficient is 0.98 and this indicates the presence of multicollinearity.

Question 2

a. Due to the law of demand, β_{12} , β_{22} and β_{32} are expected to be negative. The signs of β_{13} , β_{23} and β_{33} depend on whether we expect the good to be an inferior or normal good.

Meat is expected to be a normal good so β_{13} is expected to be positive.

Fruits and vegetables are also expected to be normal goods so β_{23} is expected to be positive.

It can be argued that cereals and bakery products are either a normal or inferior good. Therefore, β_{33} can be either positive or negative.

b. β_{12} , β_{22} and β_{32} are, respectively, the price elasticities of demand for meat, fruits and vegetables and cereals and bakery products.

 β_{13} , β_{23} and β_{33} are, respectively, the income elasticity of demand for meat, fruits and vegetables and cereals and bakery products.

c.

Regression Analysis

R²	0.623
Adjusted	
R²	0.595
R	0.789
Std. Error	0.394
30	observations
2	predictor variables
LNq1	is the dependent variable

ANOVA

table					
Source	SS	df	MS	F	p-value
Regression	6.9437	2	3.4719	22.33	1.89E-06
Residual	4.1977	27	0.1555		
Total	11.1415	29			

Regression ou	utput				confidenc	e interval
		std.	t		95%	95%
variables	coefficients	error	(df=27)	p-value	lower	upper
intercept	1.0174	1.3541	0.751	.4590	-1.7611	3.7958
				1.05E-		
LNy	1.4339	0.2288	6.267	06	0.9644	1.9033
LNp1	-0.5670	0.2149	-2.639	.0136	-1.0079	-0.1261

Regression Analysis

R²	0.541
Adjusted	
R ²	0.507
R	0.736
Std. Error	0.451
30	observations
2	predictor variables
LNq2	is the dependent variable

ANOVA

table					
Source	SS	df	MS	F	p-value
Regression	6.4654	2	3.2327	15.92	2.71E-05
Residual	5.4830	27	0.2031		

|--|

Regression ou	Itput				confidence	e interval
		std.	t	р-	95%	95%
variables	coefficients	error	(df=27)	value	lower	upper
intercept	2.4628	1.4529	1.695	.1016	-0.5183	5.4439
LNp2	-0.6482	0.1875	-3.456	.0018	-1.0330	-0.2634
LNy	1.1435	0.2612	4.378	.0002	0.6075	1.6794

Regression Analysis

R²	0.915
Adjusted	
R²	0.909
R	0.956
Std. Error	0.187
30	observations
2	predictor variables
LNq3	is the dependent variable

ANOVA

lable					
Source	SS	df	MS	F	p-value
Regression	10.1149	2	5.0575	145.07	3.60E-15
Residual	0.9413	27	0.0349		
Total	11.0562	29			

Regression ou	utput				confidence	e interval
		std.	t	t		95%
variables	coefficients	error	(df=27)	p-value	lower	upper
				1.60E-		
intercept	4.8696	0.5467	8.908	09	3.7479	5.9913
				1.87E-		
LNp3	-0.9639	0.0653	-14.769	14	-1.0978	-0.8300
				1.19E-		
LNy	0.8713	0.1082	8.050	80	0.6492	1.0934

d. For β_{12} , p-value = 0.0136<0.05= α , therefore we reject the null that β_{12} is insignificant (i.e. it is significant) For β_{13} , p-value=1.05×10⁻⁶<0.05= α , therefore we reject the null that β_{13} is insignificant (i.e. it is significant) For β_{22} , p-value=0.0018<0.05= α , therefore we reject the null that β_{22} is insignificant (i.e. it is significant) For β_{23} , p-value = 0.0002 <0.05= α , therefore we reject the null that β_{23} is insignificant (i.e. it is significant) For β_{32} , p-value = $1.87 \times 10^{-14} < 0.05 = \alpha$, therefore we reject the null that β_{32} is insignificant (i.e. it is significant) For β_{33} , p-value = $1.19 \times 10^{-8} < 0.05 = \alpha$, therefore we reject the null that β_{33} is insignificant (i.e. it is significant)

e. All three regressions have a high R^2 ranging from 54% to 91%. The best "fit" corresponds to the third demand equation (that of cereals and bakery with an R^2 of around 91%)

Question 3

- **a.** The portfolio manager is postulating that S&P500 prices follow a linear (or secular) trend model with seasonal variation.
- **b.** See excel output.

Regression Analysis

R²	0.820
Adjusted R ²	0.814
R	0.906
Std. Error	198.928
123	observations
4	predictor variables
Р	is the dependent variable

ANOVA
tabla

lable					
Source	SS	df	MS	F	p-value
Regression Residual	21,330,410.8066 4,669,552.1591	4 118	5,332,602.7017 39,572.4759	134.76	4.98E-43
Total	25,999,962.9657	122			

Regression ou	utput				confidenc	e interval
		std.			95%	95%
variables	coefficients	error	t (df=118)	p-value	lower	upper
					-	
intercept	-26.4871	47.9633	-0.552	.5818	121.4675	68.4933
				8.24E-		
t	11.7296	0.5053	23.214	46	10.7290	12.7302
					-	
D1	-5.0832	50.9497	-0.100	.9207	105.9774	95.8110
					-	
D2	-2.9312	50.9472	-0.058	.9542	103.8205	97.9581
					-	
D3	-20.1559	50.9497	-0.396	.6931	121.0502	80.7383

- c. The parameter estimate for b is positive. We need to test for the significance of b at the 5% to establish whether a time trend exists. p-value= $8.24 \times 10^{-48} < 0.05 = \alpha$, therefore we reject the null that b is insignificant (i.e. it is significant). Therefore, b is positive and significant and there is evidence of a time trend in S&P500 prices.
- d. p-value of c1 = 0.9207 > 0.05, we do not reject the null that c1 is insignificant.
 p-value of c2 = 0.9542>0.05, we do not reject the null that c2 is insignificant.
 p-value of c3 = 0.6937>0.05, we do not reject the null that c2 is insignificant.
 Given that all three seasonal dummy variables are insignificant, we conclude that there is no evidence of seasonality in S&P500 prices.
- e. Forecast of S&P500 for 2010Q4:

 $P(2010Q4) = -26.4871 + 11.72 \times 124 = 1428.80$

- f. 3 quarter MA forecast is: 1113.78, while 5 quarter moving average forecast is: 1102.704
- **g.** The adjusted closing price on 31 December 2010 is 1,257.64. The best forecasting method is the 3 quarter moving average as it is the closest to the actual value that materializes in December 2010.

Question 4

b. The correlation between E-commerce retail sales and business inventories is 0.879. This is a high correlation coefficient indicating a strong positive linear relationship between the variables.

c. Yes, a seasonal pattern is expected in both variables. Sales are expected to increase during the holiday season (In Christmas, the 4th quarter of the year) while business are expected to hold higher inventories in the quarter preceding Christmas (3^{rd} quarter) in anticipation for the increase in sales.

d. and **e.** Denote business inventories by and E-commerce retail sales by X_t and inventories by Y_t . The following 2 equations can be estimated to check for a time trend and seasonal pattern in sales:

$$X_{t} = a + bt + c_{1}D_{1} + c_{2}D_{2} + c_{3}D_{3} + e_{t}$$
$$Y_{t} = a + bt + c_{1}D_{1} + c_{2}D_{2} + c_{3}D_{3} + e_{t}$$

Where:

 $t = 1, 2, \dots, 44.$

 $D_1 = 1$ if *t* is quarter 1

 $D_2 = 1$ if *t* is quarter 2

 $D_3 = 1$ if *t* is quarter 3

Estimating the 2 equations yields:

Regression Analysis

R ²	0.691
Adjusted R ²	0.659
R	0.831
Std. Error	77666.022
44	observations
4	predictor variables
BUSSINESSINVENTORIES	is the dependent variable

ANOVA table Source SS df <u>p-v</u>alue MS F 525,777,004,336.9070 1.65E-09 Regression 4 131,444,251,084.2270 21.79 Residual 235,248,427,936.9800 39 6,032,010,972.7431 Total 761,025,432,2<u>73.8860</u> 43

confidence interval **Regression output** pvariables coefficients std. error t (df=39) value 95% lower 95% 1.85Eintercept 1,090,454.5017 30,433.8979 35.830 31 1,028,896.1334 1,152,01 1.86Etime 8,617.3960 925.6456 9.310 11 6,745.1011 10,48 Q1 -2,206.5778 33,129.8368 -0.067 -69,217.9973 64,80 .9472 Q2 -3,599.6102 33,168.6079 -0.109 -70,689.4515 63,49 .9141 Q3 -3,732.0972 33,233.1257 -0.112 .9112 -70,952.4382 63,48

Regression	Analysis				
	R²	0.965			
	Adjusted R ²	0.962			
	R	0.982			
	Std. Error	2324.924			
	44	observatio	ns		
	4 <mark>E-</mark>	predictor v	ariables		
	COMMERCERETAILSALES	is the depe	endent variable		
ANOVA table					
Source	SS	df	MS	F	p-value
Regression	5,848,914,539.6000	4	1,462,228,634.9000	270.52	7.16 <mark>E-28</mark>
Residual	210,805,548.9455	39	5,405,270.4858		

Total	6,059,720,088.5455	43	

Regression ou	utput				confidenc	ce interval
variables	coefficients	std. error	t (df=39)	p-value	95% lower	95% upper
				3.09E-		
intercept	5,613.6409	911.0354	6.162	07	3,770.8980	7,456.3838
				6.01E-		
time	905.3591	27.7091	32.674	30	849.3122	961.4060
					-	-
Q1	-4,404.1773	991.7380	-4.441	.0001	6,410.1567	2,398.1979
				2.23E-	-	-
Q2	-4,781.9909	992.8986	-4.816	05	6,790.3179	2,773.6639
				1.17E-	-	-
Q3	-4,995.4409	994.8299	-5.021	05	7,007.6744	2,983.2075

Which shows that business inventories have a positive time trend and no clear seasonal pattern (time trend is significant while seasonal dummy variables are not) whereas sales exhibit both a positive and significant time trend and a significant seasonal pattern (both the time trend and seasonal dummies are significant as evidenced by the very small p-vales on the time trend and seasonal dummy variables).