American University of Beirut تو

Final Exam: MATH 212 (Introductory PDEs)

Instructors: Mohammad El Smaily \& Wael Mahboub

December 11, 2015

Duration: 120 minutes
Name (Last, First): \qquad
Student number: \qquad

Circle your instructor's name and your section's number:
M. El Smaily Section: 1 (from 11:00 am to $12: 00 \mathrm{pm}$)
W. Mahboub Section: 2 (from 12:00 pm to 1:00pm),

Section 3 (from 1:00pm to $2: 00 \mathrm{pm}$)

For marker's use only	
Problem	Score
1	$/ 15$
2	$/ 15$
3	$/ 10$
4	$/ 12$
5	$/ 13$
6	$/ 12$
7	$/ 13$
8	$/ 10$
Total	$/ 100$

[15 points $=5+7+3$] Problem 1. The goal of this problem is to solve the PDE

$$
u_{x}-2 u_{y}-5 u=2 x^{2}-3 x y-2 y^{2}
$$

with the initial condition $u(x, 0)=e^{x}$. We will proceed as follows:
(a) Let $t=x-2 y$ and $s=2 x+y$ and $v(t, s)=u(x, y)$. Use the PDE satisfied by $u(x, y)$ and the chain rule to show that v satisfies the PDE

$$
5 v_{t}-5 v=s t .
$$

(b) Use e^{-t} as an integrating factor to solve the PDE obtained in part (a) above.
(c) Deduce $u(x, y)$ interms of x and y (use the initial conditions in the process).
[15 points $=6+6+3$] Problem 2. Let

$$
f(x)= \begin{cases}1 & \text { for }-1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
g(x)= \begin{cases}1 & \text { for }-2 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $f * g(x)$.
(b) Find the Fourier transform $\widehat{f}(k)$ and $\widehat{g}(k)$.
(c) Find the Fourier transform $\widehat{f * g}(k)$ using a method of your choice.
[10 points $=5+5$] Problem 3. Consider the PDE

$$
u_{t}=u_{x x}+t \sin x, \quad u_{x}(t, 0)=-1, \quad u_{x}(t, \pi)=0 \quad u(0 ; x)=\cos x .
$$

Let $E(t)=\int_{0}^{\pi} u(t, x) d x$ denote the total thermal energy at time t.
(a) Compute $\frac{d E(t)}{d t}$ in terms of t
(b) Conclude $E(t)$ in terms of t.
[12 points] Problem 4. Solve using a method of your choice the initial value problem

$$
u_{t}+u_{x}-3 u=t \text { for } t>0, \quad u(0, x)=x^{2} .
$$

[13 points $=5+5+3$] Problem 5. Consider the following boundary value problem

$$
\| \begin{aligned}
& u_{x x}(x, y)+u_{y y}(x, y)-16 u(x, y)+8\left(u_{x}+4 u\right)=0, \quad 0 \leq x \leq 1,0 \leq y \leq 1 \\
& u(x, 0)=2 \sin 3 x \\
& u(x, 1)=0, \quad u(1, y)=u(0, y)=0
\end{aligned}
$$

(a) Let $v(x, y)=e^{4 x} u(x, y)$. Show that $v(x, y)$ verify a planar Laplace equation (L) with suitable boundary conditions.
(b) Write $v(x, y)$ in a series format-compute the coefficients of the trigonometric terms.
(c) Deduce a series format for $u(x, y)$.
[12 points $=5+7$] Problem 6. Consider the heat problem with inhomogeneous Dirichlet boundary conditions

$$
\| \begin{aligned}
& u_{t}(t, x)=u_{x x}(t, x) \text { for } 0 \leq x \leq 2, t \geq 0 \\
& u(t, 0)=0, \quad u(t, 2)=2
\end{aligned}
$$

and the initial datum

$$
u(0, x)=\left\{\begin{array}{l}
x \text { if } 0 \leq x \leq 1 \\
2-x \text { if } 1<x \leq 2
\end{array}\right.
$$

(a) Find the equilibrium state $u^{*}(x)$.
(b) Using the function $v(t, x)=u(t, x)-u^{*}(x)$, find $u(x, y)$.
[13 points $=4+6+3]$ Problem 7. Consider the sequences of functions $\left\{f_{n}(x)\right\}$ and $\left\{g_{n}(x)\right\}$ defined by

$$
f_{n}(x)=\frac{n}{n x+1}, \quad x \in(0,1)
$$

and

$$
g_{n}(x)=\left(1+\frac{x}{n}\right)^{n}, \quad x \in \mathbb{R} .
$$

(a) Find the pointwise limits f and g of $\left\{f_{n}(x)\right\}$ and $\left\{g_{n}(x)\right\}$ respectively.
(b) Show that $\left\{f_{n}(x)\right\}$ converges to f uniformly on $[a, 1)$ for every $0<a<1$ but not over $(0,1)$.
(c) Does $\left\{g_{n}(x)\right\}$ converge uniformly to g over \mathbb{R} ? Justify your answer.
[10 points] Problem 8. Show that, if $v(t, x)>0$ is any positive solution to the linear heat equation $v_{t}=\gamma v_{x x}$, then $u(t, x)=\frac{\partial}{\partial x}(-2 \gamma \log v(t, x))$ solves Burgers' equation $u_{t}+u u_{x}=u_{x x}$.

