American University of Beirut

Final Exam: MATH 212 (Introductory PDEs)
Instructor: Wael Mahboub
May 13, 2016

Duration: 120 minutes

Name (Last, First): \qquad
Student number: \qquad

For marker's use only	
Problem	Score
1	$/ 10$
2	$/ 20$
3	$/ 10$
4	$/ 15$
5	$/ 15$
6	$/ 20$
7	$/ 10$
Total	$/ 100$

[10 points $=5+5$] Problem 1. Consider the following PDE

$$
u_{t}=u_{x x}+2 u_{x}-3 u .
$$

(a) Let $v(t, x)=e^{3 t} u(t, x)$. Use the PDE satisfied by $u(x, y)$ to show that v satisfies the PDE.

$$
\begin{equation*}
v_{t}+2 v_{x}=v_{x x} . \tag{1}
\end{equation*}
$$

(b) Let $\xi=x-2 t$, and $W(t, \xi)=v(t, x)$. Use the PDE satisfied by $v(t, x)$ and chain rule to show that W satisfies a heat equation.
[25 points $=3+2+5+5+5]$ Problem 2. Consider the following boundary value problem

$$
u_{x x}+u_{y y}-u=0, \quad u(0, y)=u(\pi, y)=u(x, 0)=0, \quad u(x, \pi)=f(x)
$$

(a) Show that separating as $u(x, y)=v(x) \cdot w(y)$, we get a seperation constant λ and two ordinary differential equations

$$
\begin{gather*}
v^{\prime \prime}-v-\lambda v=0 . \tag{2}\\
w^{\prime \prime}+\lambda w=0 \tag{3}
\end{gather*}
$$

(b) Write the boundary conditions that v and w must satisfy.
(c) Show that the ODE (2) admits a non trivial solution, if and only if $\lambda=-1-n^{2}$ where n is a integer.
(d) Show that for each positive integer n, for $\lambda=-1-n^{2}$, the ODE (3) has a solution involving the hyperbolic sine function (Hint: Use $w(0)=0$).
(e) Conclude a series solution of the form $u(x, y)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, y)$ where the constants c_{n} must be computed in terms of the function f.
[10 points] Problem 3. Solve the following boundary value problem.

$$
\| \begin{aligned}
& \Delta u=0, \quad x^{2}+y^{2}<1 \\
& u(x, y)=x, x^{2}+y^{2}=1
\end{aligned}
$$

. Where Δ is the Laplace Operator
(You're not required to give a proof of your formulas).
[15 points $=10+5]$ Problem 4. Let D be the square $\left\{(x, y) \in \mathbb{R}^{2} / 0 \leq x<\pi, 0 \leq y<\pi\right\}$.

1. Solve the heat problem

$$
\| \begin{aligned}
& u_{t}=u_{x x}+u_{y y}, \quad(x, y) \in D \\
& u(t, 0, y)=u(t, \pi, y)=u(t, x, 0)=u(t, x, \pi)=0 \\
& u(0, x, y)=f(x, y), t \geq 0
\end{aligned}
$$

Where f is a continuous function in D.
(You're not required to give a proof of your formulas).
2. Give the solution in the case $f(x, y)=2 \sin (x) \sin (2 y)-3 \sin (2 x) \sin (5 y)$.
[15 points $=6+6+3$] Problem 5. Let

$$
f(x)= \begin{cases}2 & \text { for }-3 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the Fourier transform $\widehat{f}(k)$.
(b) Find $f * f(x)$.
(c) Find the Fourier transform $\widehat{f * f}(k)$.
[20 points $=6+7+7]$ Problem 6. Consider the following heat problem.

$$
\| \begin{aligned}
& u_{t}=u_{x x}-2 t u, \quad(x \in \mathbb{R}, t \geq 0) \\
& u(0, x)=e^{-x^{2}}, \\
& u(t, x) \rightarrow 0 \text { as }|x| \rightarrow \infty, \text { uniformly in } t .
\end{aligned}
$$

1. Show that the Fourier transform of $e^{-x^{2}}$ is given by $e^{-x^{2}}=\frac{e^{\frac{-k^{2}}{4}}}{\sqrt{2}}$. (Hint: Use $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$).
2. Let \hat{u} denote the Fourier transform of u with respect to x. Show that

$$
\hat{u}(t, k)=\frac{e^{-k^{2}\left(t+\frac{1}{4}\right)-t^{2}}}{\sqrt{2}} .
$$

3. Show that the solution is given by

$$
u(t, x)=\frac{e^{-t^{2}}}{\sqrt{\pi}} \int_{0}^{\infty} e^{-k^{2}\left(t+\frac{1}{4}\right)} \cos (k x) d x .
$$

[10 points $=6+4$] Problem 7. Let $f(x)=\sin x$ for $0 \leq x<\pi$.
(a) Expand the function $f(x)=\sin x$ in a Fourier cosine series in the range $0 \leq x<\pi$.
(b) Use the series to evaluate the sum $\sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1}$.

