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[20 points=5+5+10] Problem 1.

a) Find the Fourier series of the 2π-periodic function φ(x) = sinx cosx without doing the
integral computations of the coefficients ak and bk – Justify your answer.

b) Suppose that f is a piecewise continuous 2π-periodic function. Let g(x) =
∫ x
0
f(t)dt. Give

a necessary and sufficient condition on f so that g is 2π-periodic.

c) Knowing that the Fourier series of the odd function sign(x) :=


−1 for − π ≤ x < 0
0 x = 0
1 otherwise

is given by
4

π

∞∑
k=0

sin(2k + 1)πx

2k + 1
, find (after justifications) the Fourier series of the 2π-

periodic function defined by g(x) = |x| for x ∈ [−π, π].
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[25 points=20+ 5] Problem 2. Let f̃ be the 2π-periodic extension of the function f defined,
over [−π, π], by f(x) = ex.

a) Compute the Fourier series of f.

b) What is the value of the Fourier series of f at the point x = −π? Is it e−π?
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[30 points=10+10+5+5] Problem 3. Consider the following sequences of functions over
the real line R :

fn(x) = xe−nx
2

and gn(x) = nxe−nx
2

, n = 1, 2, · · ·

1. Determine the pointwise limits of the the sequences of functions {fn(x)}n and {gn(x)}n
for all x ∈ R?

2. Compute max
x∈R
|fn(x)| and max

x∈R
|gn(x)|.

3. Study the uniform convergence of {fn(x)}n over R. Justify your answer.

4. Study the uniform convergence of {gn(x)}n over R. Justify your answer.
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[25 points=10+5+5+5] Problem 4. Consider the following PDE whose unknown is u(t, x)

∂2u

∂t2
(t, x) =

∂2u

∂x2
and u(0, x) = f(x), ux(0, x) = g(x) (1)

where t ≥ 0 and x ∈ R and f, g are two give functions of class C2 over R. Let

r = x+ t and s = x− t and u(t, x) = v(r, s) = v(x+ t, x− t).

1. Use the cain rule to find
∂2u

∂t2
(t, x) and

∂2u

∂x2
in terms of the partial derivative vs, vs, vrr,

vrs and vss.

2. Show that the PDE (1) is equivalent to the PDE

∂2v

∂r∂s
= 0. (2)

3. Write down the general solution of (2) (Help:
∂2v

∂r∂s
= 0 means that ∂

∂r

(
∂v
∂s

)
= 0).

4. Use the initial data on u(t, x) and part 3. to find the form of the solution of (1) interns
of f(x) and g(x).
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Scratch paper

Page 11 of 11


