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[9=4+5 marks] Problem 1. (the parts of this problem are not related)
Let u = u(t, x) be a smooth solution of the following PDE (where x ∈ [0, 1] and t ≥ 0):

ut(t, x) = uxx + λux, for all t > 0, 0 < x < 1

u(t, 1) = u(t, 0) = 0 for all t > 0

u(0, x) = f(x)

(1)

where f is a random C1, non constant, function which vanishes outside the interval
[

1

4
,
3

4

]
and

λ is a fixed real number. Define the quantity

m(t) :=

∫ 1

0

(u(t, x))2 dx.

1. (4 marks) Show that, if u is a smooth solution of the above problem,
dm

dt
(t) remains

strictly negative for all t (regardless of the sign of λ).
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2. (5 marks) In this part, replace the conditions on u(t, 0) and u(t, 1) (in the PDE (1)) by
the following:

ux(t, 1) = 0, u(t, 1) = 1 and u(t, 0) = 0.

(Notice the difference between the current conditions and the ones in part 1). Show that

for all t ≥ 0, m(t) ≤ λt+

∫ 1

0

(f(x))2 dx.

(Hint: upon an integration by parts of the PDE multiplied by u, observe first that m′(t)
is less than or equal to λ.)
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more space if needed
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[4 marks] Problem 2. Let Ω be the rectangular region in the xy-plane with vertices
(0, 0), (1, 0), (1, 1

2
), (0, 1

2
) and let u be a smooth solution to the following PDE:

−uxx − uyy = 3u for (x, y) ∈ Ω,

with the boundary condition

∂u

∂n
(x, y) = 1 for (x, y) ∈ ∂Ω.

Use Green’s identities and the PDE to show that∫∫
Ω

u(x, y)dxdy = −1.
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[9 marks=5+4] Problem 3. Consider the linear wave equation

utt(t, x) = 2uxx(t, x) for x ∈ [0, 5] and t ≥ 0,

with the initial data

u(0, x) = 11 sin(7πx) and ut(0, x) = g(x) = 2 sin 3πx

and boundary conditions
u(t, 0) = u(t, 5) = 0 for all t > 0.

1. (5 marks) Using the method of separation of variables, find the explicit expression of the
solution u(t, x) (Give all necessary justifications).
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2. (4 marks) Use D’Alembert’s formula to compute the function u(t, x) which solves the
same wave equation, given in the previous page, with same initial data and boundary
conditions.
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[3 marks] Problem 4. Write down a linear wave equation and a set of boundary-initial
values which are satisfied by the function

u(t, x) = cos(2t) sin(7πx).

(Justify your answer)
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