

Quiz 1: MATH 212 (Introductory PDEs)

Instructor: Wael Mahboub

February 26, 2016

Duration: 60 minutes

Name (Last, First): _____

Student number: _____

For marker's use only	
Problem	Score
1	/20
2	/20
3	/20
4	/20
5	/20
Total	/100

[20 points=10+7+3] Problem 1. Consider the following PDE

$$u_{tt} - u_{xx} - \frac{4}{x}u_x - \frac{2}{x^2}u = 0.$$
 (1)

The goal of this problem is to solve (1) with initial values u(0, x) = x, $u_t(0, x) = 0$. (a) Let $v(t, x) = x^2 u(t, x)$. Show that v(t, x) satisfy the wave equation

$$v_{tt} = v_{xx}.$$
 (2)

(b) Solve the initial value problem given by (2) and suitable initial values.

(c) Deduce u(t, x).

[20 points=6+7+7] Problem 2. Solve the following PDEs.

(a) $u_{tt}(t,x) + u_t(t,x) = 0.$

(b) $u_{tx}(t,x) = x$.

(c) $u_{tt}(t,x) + u(t,x) = sint.$

[20 points=10+10] Problem 3. Solve the following initial value problems.

(a) $u_{tt} = 4u_{xx}, u(0, x) = e^{-x^2}, u_t(0, x) = x.$

(b) $u_t - 2u_x + 3u = t$, u(0, x) = sinx.

[20 points] Problem 4. Solve the initial value problem

$$\begin{vmatrix} u_{tt} - 6u_{tx} - 7u_{xx} = 0, \\ u(0, x) = x^2, \\ u_t(0, x) = e^x. \end{vmatrix}$$

(Hint: Factor the associated linear differential operator.)

[20 points] Problem 5. Find all separable eigensolutions to the heat equation $u_t = u_{xx}$ on the interval $0 \le x \le \pi$, subject to Neumann boundary conditions $u_x(t,0) = 0$, $u_x(t,\pi) = 0$.