MATH 212 HOMEWORK (\# 1)
 Due Monday September 22, in class

Mohammad El Smaily
American University of Beirut

September 14, 2014

Problem 1: PDEs solved via ODEs

a) Show that $\phi(s):=\tanh (s):=\frac{e^{s}-e^{-s}}{e^{s}+e^{-s}}$ is a solution of the ordinary differential equation

$$
\begin{equation*}
-\phi^{\prime \prime}(s)+2\left(\phi(s)^{2}-1\right) \phi(s)=0, \quad s \in \mathbb{R} \tag{1}
\end{equation*}
$$

such that $\lim _{s \rightarrow-\infty} \phi(s)=-1$ and $\lim _{s \rightarrow+\infty} \phi(s)=1$. For simplicity of the presentation presentation, you may omit the s variable in (1) and just write

$$
-\phi^{\prime \prime}+2\left(\phi^{2}-1\right) \phi=0 \text { in } \mathbb{R} .
$$

b) Consider the partial differential equation

$$
\begin{equation*}
-\Delta u+2\left(u^{2}-1\right) u=0 \text { for }(x, y) \in \mathbb{R}^{2} \tag{2}
\end{equation*}
$$

where u is a function of 2 variables $(u=u(x, y))$ and Δu stands for $u_{x x}+u_{y y}$. Let $\mathbf{e}:=(\cos \alpha, \sin \alpha)$ be a unit vector $(|\mathbf{e}|=1)$ for some $\alpha \in$ $(0, \pi / 2)$. Consider the change of variables $u(x, y)=\phi(x \cos \alpha+y \sin \alpha)$.

1) Find the differential equation that the function ϕ satisfies whenever $u(x, y)$ satisfies (2).
2) Use Part a) above to find a solution u for PDE (2) which satisfies $\lim _{(x, y) \cdot \mathbf{e} \rightarrow-\infty} u(x, y)=-1$ and $\lim _{(x, y) \cdot \mathbf{e} \rightarrow+\infty} u(x, y)=1$ (Here, $(x, y) \cdot \mathbf{e}$ stands for the dot product between the vectors (x, y) and e.)

Problem 2: Order 1 PDEs

1) Find a bunch of functions (3 or more) $f(x, y)$ whose level curves are circles centred at the origin. Explain how you design these functions.
2) What are the components of $V(x, y)$ which is the tangent vector, at a point (x, y), to a circle centred at the origin.
3) In this part, we intend to use the previous collected information in solving a PDE. Consider the partial differential equation

$$
\begin{equation*}
-y \partial_{x} u+x \partial_{y} u=0 \text { for all }(x, y) \in \mathbb{R}^{2} . \tag{3}
\end{equation*}
$$

Use a geometric method to find the general solution of the PDE (3) above. (Give all necessary explanations.)
4) Can you design a PDE whose solution $u(x, y)$ admits elliptical level curves? (Hint: use the algorithm sketched in parts 1,2,3 above in the case of circles...)
5) Consider the parabolas $\left(P_{a}\right)_{a \in \mathbb{R}}: y=x^{2}+a$ (a is a random constant). Find a vector $V(x, y)$ which is tangent to P_{a} at point (x, y).
6) Use the previous part to construct a PDE whose solution $u(x, y)$ will have parabolic level curves of the form $\left(P_{a}\right)_{a \in \mathbb{R}}$.

Problem 3: Change of Coordinates Method

Use a suitable change of coordinates to solve (i.e find a general solution $u(t, x))$ the PDE

$$
\begin{equation*}
9 u_{t}-2014 u_{x}=0 . \tag{4}
\end{equation*}
$$

