Math 212, Fall 2007

Instructor : Friedemann Brock
Final Exam, 28 January 2008

1. (10 points) Consider the Dirichlet problem in a square,

$$
\begin{array}{ll}
(\mathbf{P}) & u_{x x}+u_{y y}=-F(x, y) \\
& (0 \leq x \leq \pi, 0 \leq y \leq \pi) \\
& u(0, y)=u(\pi, y)=u(x, 0)=u(x, \pi)=0
\end{array}
$$

where F is a given continuous function. Find a formula for the solution u of (\mathbf{P}) in form of a double Fourier series which involves terms of the form $\sin m x \sin n y,(m, n \geq 1)$.
Hint: The function $v(x, y) \equiv v_{m n}(x, y):=\left(m^{2}+n^{2}\right)^{-1} \sin m x \sin n y$ satisfies the equation

$$
v_{x x}+v_{y y}=-\sin m x \sin n y .
$$

2. Find the Fourier transforms of the following functions:

$$
\begin{array}{ll}
\text { (a) (10 points) } & f_{1}(x)=\left\{\begin{array}{cc}
x & \text { if }-1<x<1 \\
0 & \text { otherwise. }
\end{array}\right. \\
\text { (b) (10 points }) & f_{2}(x)=2 e^{-(x-1)^{2} / 2} .
\end{array}
$$

3. Consider the following heat problem with dissipation:

$$
\text { (Q) } \begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}-t u, \quad(x \in \mathbb{R}, t>0), \\
& u(x, 0)=e^{-|x|}, \quad(x \in \mathbb{R}), \\
& u(x, t) \rightarrow 0 \text { as }|x| \rightarrow \infty, \text { uniformly in } t .
\end{aligned}
$$

(a) (10 points) Let \hat{u} denote the Fourier transform of u w.r.t. the variable x. Obtain an ODE for \hat{u}. Show that

$$
\begin{equation*}
\hat{u}(\xi, t)=e^{-\xi^{2} t-\left(t^{2} / 2\right)} \frac{2}{1+\xi^{2}} . \tag{1}
\end{equation*}
$$

(b) (5 points) Use formula (1) to show that the solution of (\mathbf{Q}) is given by

$$
\begin{equation*}
u(x, t)=\frac{2}{\pi} e^{-t^{2} / 2} \int_{0}^{+\infty} \frac{e^{-\xi^{2} t} \cos \xi x}{1+\xi^{2}} d \xi \tag{2}
\end{equation*}
$$

(c) (5 points) Use the well-known property

$$
\begin{equation*}
\mathcal{F}^{-1}[\hat{f}(\xi) \hat{g}(\xi)]=(f * g)(x) \tag{3}
\end{equation*}
$$

$\left(|f|^{2},|g|^{2}\right.$ integrable), to obtain an alternative representation formula for the solution u of (\mathbf{Q}).

