QUIZ 2

Fall 2004-2005
(Monday, January 10, 2005)

CIVE310 - MECHANICS OF MATERIALS
 CLOSED BOOK, 1 ½ HOURS

Name:			ID\#:	
$P / A ;$	$T c / J ;$	$M c / I$		
$b h^{3} / 12 ;$	$\Pi R^{2} ;$	$2 \Pi R t ;$	$\Pi R^{4} / 2 ;$	$2 \Pi R^{3} t$

NOTES

- 3 PROBLEMS - 12 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- TWO EXTRA SHEETS ARE PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE FOR YOU TO CONFIRM THAT HAVE SOLVED A QUESTION

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I: _ _ _/20
Problem II: _ _ _ 135
Problem III:___/45
Other: _-_

TOTAL:
/100

Problem I: (20 points)

Figure I

The block shown in Figure I is made of a magnesium alloy for which the modulus of elasticity $\mathrm{E}=50,000 \mathrm{MPa}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ and Poisson's ratio $\mathrm{v}=1 / 3$. Assume linear elastic behavior, and given that $\sigma_{\mathrm{x}}=180 \mathrm{MPa}$ in compression, determine the following:

1. The magnitude of σ_{Y} for which the change in height L_{Y} of the block is zero. (5 points)
2. The corresponding change in the horizontal area (XZ Plane). (7 points)
3. The corresponding change in volume using 2 different methods and compare. (8 points)

Calculations and/or Diagrams:
\qquad

[^0]\qquad
\qquad

Problem II:(35 points)

Figure II

The weightless shaft shown in Figure II is made of a thick tube. Assuming linear elastic behavior, and given that the allowable shear stress $\tau_{\text {all }}$ is $70,000 \mathrm{kPa}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ and shear modulus G is $200 \times 10^{6} \mathrm{kPa}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$, determine:

1. The maximum torque T which can be applied, and plot the shear stress distribution on the cross section. Calculate the torsional stiffness and the rotation at the free end. (13 points)
2. The maximum torque which can be applied on a solid shaft of same weight and material (i.e. same cost). Compare with question 1 and briefly discuss. (10 points)
3. The diameter and cross-section area of a thin shaft of thickness $\mathrm{t}=1 \mathrm{~cm}$ which will result in the same torque capacity as the thick shaft in Figure II; compare cost and briefly discuss. (12 points)

Calculations and/or Diagrams:

\qquad

[^1]\qquad
\qquad

[^2]\qquad
\qquad

Problem III: (45 points)

Figure III

A steel I-beam with overhanging ends is subjected to a uniformly distributed load w, as shown in Figure III. The dimensions of the beam are shown on the cross-section. The yield stress in tension and compression is $\sigma_{Y T}=\sigma_{Y C}=200 \mathrm{MPa}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ and the factor of safety assumed is 1.6.

1. Draw the shear and bending moment diagram of the beam. (10 points)
2. Determine the axial flexural stresses at the critical sections of maximum negative and positive moments, and briefly discuss safety. (10 points)
3. Compute the moment capacity of the section in tension and compression, and determine the maximum additional allowable uniform load $\Delta \mathrm{w}$ that can be added to the beam safely. (15 points)
4. Compute the maximum permissible concentrated load applied at mid length of the beam (between B and C), in addition to the existing w (without $\Delta \mathrm{w}$). (10 points)

Calculations and/or Diagrams:

\qquad

[^3]\qquad
\qquad

[^4]\qquad
\qquad

[^5]\qquad
\qquad

EXTRA SHEET 1: Continued from page

Name:

Calculations and/or Diagrams:

EXTRA SHEET 2: Continued from page

Name:

Calculations and/or Diagrams:

[^0]: Calculations and/or Diagrams (cont'd):

[^1]: Calculations and/or Diagrams (cont'd):

[^2]: Calculations and/or Diagrams (cont'd):

[^3]: Calculations and/or Diagrams (cont'd):

[^4]: Calculations and/or Diagrams (cont'd):

[^5]: Calculations and/or Diagrams (cont'd):

