QUIZ 2

Fall 2001-2002
(Monday, January 14, 2002)

CVEV 041 - MECHANICS OF MATERIALS
 CLOSED BOOK, $1 ½$ HOURS

Name:

NOTES

- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I: _ _ _ 150
Problem II: /50
Other:

TOTAL:
/100

Problem I: (50 points)

Cross-Section

Figure I

A simply supported beam is loaded as shown in Figure I. The cross-section dimensions are also shown in the figure. Assume linear elastic behavior and that the beam is safe in shear.

The dimensions of the beam are given as follows:

- $L=6 \mathrm{~m}$
- $b_{1}=0.60 \mathrm{~m} \quad b_{2}=0.20 \mathrm{~m}$
- $h_{l}=0.20 \mathrm{~m} \quad h_{2}=0.40 \mathrm{~m}$

The following are the properties of the system:

- $E=20 \times 10^{6} \mathrm{kPa}\left(\mathrm{kN} / \mathrm{m}^{2}\right) \quad$: Modulus of elasticity
- $\sigma_{Y T}=10000 \mathrm{kPa} \quad$: Yield stress in tension
- $\sigma_{Y C}=20000 \mathrm{kPa} \quad$: Yield stress in compression

The following loads/weights are to be considered:

- $w=25 \mathrm{kN} / \mathrm{m}$
: Distributed own weight of the beam
- $P=100 \mathrm{kN}$
: Moving load positioned at " a " between (A) and (B)

1. Determine the moment capacity of the section. (15 points)

Calculations and/or Diagrams:

\qquad
2. Let P be applied at $a=L / 4=1.5 \mathrm{~m}$

Draw the shear and bending moment diagrams in the beam. (10 points)
Show the stress distribution due to bending on the critical cross section, and discuss the safety of the beam for bending. (10 points)

Calculations and/or Diagrams:

\qquad

Calculations and/or Diagrams (cont'd):
\qquad
3. Discuss the beam safety for a worst-case condition of P. Show that condition. (15 points)

Calculations and/or Diagrams:

\qquad

Problem II:(50 points)

Circular Cross-Section
Diameter D_{l} or D_{2}

Figure II

The circular shaft shown in Figure II is indeterminate to the first degree. Assume linear elastic behavior and neglect the own weight of the shaft.

The dimensions, properties and torque load of the shaft are given as follows:

- $L_{1}=3 \mathrm{~m} \quad L_{2}=2 \mathrm{~m}$
- $D_{l}=0.50 \mathrm{~m} \quad D_{2}=0.30 \mathrm{~m}$
- $G=10 \times 10^{6} \mathrm{kPa}\left(\mathrm{kN} / \mathrm{m}^{2}\right) \quad:$ Shear modulus of elasticity
- $T=50 \mathrm{kNm} \quad$: Torque applied at B

1. Solve for the angle of rotation at B. (15 points)

Compute and draw the shear stress distribution at B . (10 points)

Calculations and/or Diagrams:
\qquad

Calculations and/or Diagrams (cont'd):
\qquad
2. The shaft was subjected to an experiment and the maximum shear strain at a section just to right of B was measured as 0.0001535 .
Compute the reactions of the shaft and the angle of rotation at B. Compare with question 1 and briefly comment. (15 points)

Calculations and/or Diagrams:
\qquad
3. What is the uniform diameter D of a shaft of total length (5 m) which will give the same angle of rotation at B computed in question 1. Compare D to D_{l} and D_{2}, and very briefly comment. (10 points)

Calculations and/or Diagrams:

\qquad

EXTRA SHEET: Continued from page

Name:
ID\#:

Calculations and/or Diagrams:

EXTRA SHEET: Continued from page

Name:
ID\#:

Calculations and/or Diagrams:

