QUIZ 1

Fall 2005-06
(Wednesday, November 9, 2005)

CIVE310 - MECHANICS OF MATERIALS
 CLOSED BOOK, 1 ½ HOURS

Name:

\qquad ID\#: \qquad
NOTES

- 2 PROBLEMS - 14 PAGES.
- ALL YOUR ANSWERS SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- TWO EXTRA SHEETS ARE PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE MUCH LESS THAN THE SPACE PROVIDED.
- DO NOT USE THE BACK OF THE SHEETS FOR ANSWERS.
- DRAFT BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE RETURNED.
- CHECK BOXES ARE FOR YOU TO CONFIRM THAT HAVE SOLVED A QUESTION

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

Problem I: _ _ _ 140
Problem II: _ _ _/60
Other:

TOTAL:

Problem I: (40 points)

Figure I-a

Figure I-b

Assume that the beam ABC and axial steel circular bar (or cable) BD in Figures I-a and I-b are weightless.

The properties and dimensions of the steel bar are as follows:

- $E=200 \times 10^{6} \mathrm{kPa}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
- $\sigma_{y}=300,000 \mathrm{kPa}$
: Modulus of elasticity of steel
- $F S=1.5 \quad$: Factor of safety
- $D=2.5 \mathrm{~cm}$: Steel bar diameter

1. Referring to Figure I-a, draw the axial force, shear force, and bending moment diagrams for the beam ABC. (20 points)

Calculations and/or Diagrams:
\qquad

Calculations and/or Diagrams (cont'd):

\qquad
2. Referring to Figure I-b where Bar BD is used to replace the roller support at B:

- For $\mathrm{P}=0$, indicate, without calculations, which of the axial force, shear force, and bending moment diagrams will change from question 1. (4 points)
- For $\mathrm{P}=0$, compute the force in the cable, and briefly discuss its safety. Determine the elongation of the cable. (8 points)
- Determine the maximum allowable load P that can be added at point C , assuming that the beam ABC will remain safe. (8 points)

Calculations and/or Diagrams:

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

Problem II:(60 points)

Figure II-a

Figure II-b

The rectangular concrete member shown in Figure II has the following properties and dimensions:

- $E=20 \times 10^{6} \mathrm{kPa}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
: Modulus of elasticity
- $\gamma=25 \mathrm{kN} / \mathrm{m}^{3}$
- Part $[A B]: \quad L_{1}=2.0 \mathrm{~m}$
: Weight density
- Part [BC]: $L_{2}=3.0 \mathrm{~m} \quad A_{2}=1.0 \mathrm{~m} \times 0.5 \mathrm{~m} \quad$ Weight $=W_{2}$

1. Using Equivalent Concentrated Own Weights \boldsymbol{W}_{l} and \boldsymbol{W}_{2} applied at centroids of parts [AB] and [BC], respectively, as shown in Figure II-a:

- Draw the axial force, stress, strain and displacement diagrams. (17 points)
- Compute the axial stiffness of the bar. (3 points)

Calculations and/or Diagrams:

\qquad

Calculations and/or Diagrams (cont'd):

\qquad

2. Using Actual Distributed Own Weight as shown in Figure II-b:

- Calculate the axial stress at points A and E and compare with results obtained in question

1. (7 points)

- Calculate the vertical displacement of point C. Compare with question 1 and briefly discuss. (15 points)
- Compute the axial stiffness of the bar. (3 points) \square

Calculations and/or Diagrams:

\qquad

Calculations and/or Diagrams (cont'd):
\qquad
3. The bar system in Figure II-a is now fixed at C and A as shown in Figure II-c. Compute the support reactions at A and C. (15 points)

Figure II-c

(THINK BEFORE YOU SOLVE: THIS MAY SAVE YOU QUITE SOME TIME)
Calculations and/or Diagrams (cont'd):
\qquad

Calculations and/or Diagrams (cont'd):

\qquad

EXTRA SHEET: Continued from page

Name:
ID\#:

Calculations and/or Diagrams:

EXTRA SHEET: Continued from page

Name:
ID\#:

Calculations and/or Diagrams:

