<u>QUIZ 1</u>

Fall 2005-06 (Wednesday, November 9, 2005) CIVE310 - MECHANICS OF MATERIALS CLOSED BOOK, 1 ½ HOURS

Name:

ID#:

<u>NOTES</u>

- 2 PROBLEMS 14 PAGES.
- ALL YOUR <u>ANSWERS</u> SHOULD BE PROVIDED ON THE QUESTION SHEETS.
- <u>TWO EXTRA</u> SHEETS ARE PROVIDED AT THE END.
- ASK FOR ADDITIONAL SHEETS IF YOU NEED MORE SPACE.
- SOME ANSWERS MAY REQUIRE <u>MUCH LESS</u> THAN THE SPACE PROVIDED.
- **DO NOT** USE THE <u>BACK</u> OF THE SHEETS FOR ANSWERS.
- <u>DRAFT</u> BOOKLET WILL BE PROVIDED; BUT DO NOT USE FOR ANSWERS.
- BOTH QUESTION SHEETS AND DRAFT BOOKLET SHOULD BE <u>RETURNED</u>.
- CHECK BOXES ARE FOR YOU TO CONFIRM THAT HAVE SOLVED A QUESTION

YOUR COMMENT(S)

DO NOT WRITE IN THE SPACE BELOW

MY COMMENT(S)

YOUR GRADE

 Problem I:
 ___/40

 Problem II:
 ___/60

 Other:

TOTAL: /100

Quiz 1

Problem I: (40 points)

Assume that the beam ABC and axial steel circular bar (or cable) BD in <u>Figures I-a and I-b</u> are weightless.

The properties and dimensions of the steel bar are as follows:

- $E = 200 \times 10^{6} \text{ kPa} (\text{kN/m}^2)$: Modulus of elasticity of steel
- $\sigma_v = 300,000 \text{ kPa}$
- FS = 1.5

- : Yield strength of steel in tension and compression : Factor of safety
- D = 2.5 cm : Steel bar diameter
- 1. Referring to Figure I-a, draw the axial force, shear force, and bending moment diagrams for the beam ABC. (20 points)

Calculations and/or Diagrams:

Calculations and/or Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ -----

- 2. Referring to Figure I-b where Bar BD is used to replace the roller support at B:
 - For P=0, indicate, without calculations, which of the axial force, shear force, and bending moment diagrams will change from question 1. (4 points)
 - For P=0, compute the force in the cable, and briefly discuss its safety. Determine the elongation of the cable. (8 points)
 - Determine the maximum allowable load P that can be added at point C, assuming that the beam ABC will remain safe. (8 points)

Calculations and/or Diagrams:

Calculations and/or Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

Quiz 1

Problem II:(60 points)

The rectangular concrete member shown in $\underline{\mbox{Figure II}}$ has the following properties and dimensions:

•	$E = 20 \text{ x } 10^6 \text{ k}$	$Pa (kN/m^2)$: Modulus of elasticity		
•	$\gamma = 25 \text{ kN/m}^3$: Wei	ght density	
•	Part [AB]:	$L_1 = 2.0 \text{ m}$	$A_1 = 0.5 \text{ m x } 0.5 \text{ m}$	Weight = W_1	
-	Dreat [DC].	I 20m	1 1 0 m x 0 5 m	Waisht W	

• *Part [BC]:* $L_2 = 3.0 \text{ m}$ $A_2 = 1.0 \text{ m x } 0.5 \text{ m}$ Weight = W_2

1.	 Using Equivalent Concentrated Own Weights W₁ and W₂ applied at centroids of parts [AB] and [BC], respectively, as shown in Figure II-a: Draw the axial force, stress, strain and displacement diagrams. (17 points) Compute the axial stiffness of the bar. (3 points) 	
	Calculations and/or Diagrams:	

7

_ _ _ _

_

- -

- -

Calculations and/or Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ ----------

2. Using Actual Distributed Own Weight as shown in Figure II-b:

- Calculate the axial stress at points A and E and compare with results obtained in question

 (7 points)
- Calculate the vertical displacement of point C. Compare with question 1 and briefly discuss. (15 points)
- Compute the axial stiffness of the bar. (3 points)

Calculations and/or Diagrams:

Calculations and/or Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

- - - - -

3. The bar system in Figure II-a is now fixed at C and A as shown in <u>Figure II-c</u>. Compute the support reactions at A and C. (15 points)

Figure II-c

(THINK BEFORE YOU SOLVE: THIS MAY SAVE YOU QUITE SOME TIME)

Calculations and/or Diagrams (cont'd):

Calculations and/or Diagrams (cont'd): _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____

EXTRA SHEET: Continued from page _

Name:	<u>ID#:</u>
Calculations and/or Diagrams:	

EXTRA SHEET: Continued from page _

Name:	<u>ID#:</u>
Calculations and/or Diagrams:	