QUIZ 1- November 30, 2000
Fall 2000-2001
CVEV 041 - MECHANICS OF MATERIALS
CLOSED BOOK, $1 ½$ HOURS

Name:

2 Pages, 2 Problems

Read all questions before you start and manage your time carefully.

 Return the question sheet with the answering booklet.Problem I: (65 points + Take a Break)

Figure I-a

ID\#: \qquad

Problem II: (35 points + Bonus)

Figure II
A cube (1 x 1 x 1 m) has the following material properties:
Modulus of elasticity $E=10^{6} \mathrm{kPa}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ and Poisson's Ratio $v=0.2$
Assume linear elastic, small deformation behavior, and neglect the weight of the cube.
The cube is subjected to a uniform tensile pressure $p=5,000 \mathrm{kPa}$ as shown in Figure II.

1. What is the state of stress and strain in the cube. (13)
2. Sketch the cube after deformation, and calculate its deformed volume using the product of the three sides. Deduce the volumetric strain. (7)
3. The axial strain ε due a change in temperature applies uniformly in all directions and is given by:
$\varepsilon=\alpha$. (ΔT)
where ΔT is the change in temperature in degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$, positive for increase in temperature, and α is the coefficient of linear expansion in $\left(1 /{ }^{\circ} \mathrm{C}\right)$, a physical property of the material.
After $p=5,000 \mathrm{kPa}$ is applied, a temperature drop of $50^{\circ} \mathrm{C}$ was needed to bring the elongated dimension of the cube to the original 1 m . Compute α. What are the final dimensions of the cube. (10)
If this problem is repeated with a cube of dimensions ($2 \times 2 \times 2 \mathrm{~m}$), estimate α (do not perform any computations, just give your answer with a very brief 1 -line comment). (5)

Bonus Question:

The material is now bi-linear as shown below. For the same p and E, and no temperature drop, what is elongation of the cube (in the direction of the pressure $p)$? Compare with the value obtained in question 2 and very briefly comment.

