Time: 90 min.

<u>Chem. 205</u> <u>Final Examination</u>

May 31, 2001 S. Sadek-Hajj

GRADE :_____/ 100

I.D. #	:	First Name Major Instructor		
		SCORE:	:	15%
		II	:	35 %
		Ш	*	
		IV V	:	21%

Useful constants

 $Kw = 1.0 \times 10^{-14}$

- I. (15%) Circle T for True statements and F for False ones:
 T F Random errors are indeterminate errors that can not be corrected for.
 T F In using the Mettler balance, the last reading should be taken on the semi-released position.
 T F Small random errors occur more frequently than large ones.
 T F Errors that affect the measurements in the same manner are called systematic errors.
- T F If the molar solubility of calcium phosphate is given by s, then its solubility product is given by 108s⁵
- T F Among the cations studied in Chemistry 205, those which have +3 charge belong to Group III
- T F If two sparingly soluble salts have the same value for Ksp then certainly they have the same solubility
- T F According to Beer's Law the absorbance of a certain species at a given wavelength is inversely proportional to its molar concentration.
- T F In the Laboratory, if a chemical is spilled on your hand you should immediately dry it with a towel and continue the experiment.
- **T** F In qualitative analysis, the reagent that, when added, precipitates the cations present is called the group reagent.

- II. (35%) Circle the letter preceding the best answer:
 - Which of the following statement(s) is(are) reasonable concerning Ksp of a slightly soluble salt:
 - a. Ksp is the same as molar solubility and it depends on temperature
 - b. Ksp is the same in a solution containing a common ion as in pure water
 - c. To calculate Ksp, use solubility in g/l
 - d. All of the above
 - e. None of the above
 - Calculate the molar solubility of PbCrO₄ knowing that its Ksp = 2.0×10^{-14}
 - a. $1.0 \times 10^{-7} \text{ M}$
 - b. $3.8 \times 10^{-4} \text{ M}$
 - c. $2.0 \times 10^{-14} \text{ M}$
 - d. 1.4 x 10⁻⁷ M
 - e. $4.0 \times 10^{-10} \text{ M}$
 - Ammonia is a weak base ($K_b = 1.8 \times 10^{-5}$). Determine the pH of a 0.100M NH₃ solution
 - a. 11.13
 - b. 2.87
 - c. 8.27
 - d. 12.09
 - e. None of the above
 - 25.00ml of HCl 0.100M were added to a beaker containing 25.00 ml of NaOH 0.200M. The pH of the resulting solution is equal to:
 - a. 1.30
 - b. 13.00
 - c. 12.70
 - d. 13.30
 - e. 2.00
 - After balancing the following reaction, the stoichiometric coefficients will be respectively:

$$Cr_2O_7^{2-} + I + H^+$$
 _____ $Cr^{3-} + I_3^- + H_2O$

- a. 1, 6, 12, 2, 2, 6
- b. 1, 9, 14, 2, 3, 7
- c. 2, 9, 14, 4, 3, 7
- d. 2, 6, 12, 4, 2, 6
- e. Can not be balanced

- The molar solubility of Pb(IO₃)₂ in 0.10M NaIO₃ solution is 2.4 x 10⁻¹¹M. Then the Ksp for Pb(IO₃)₂ is equal to:
 - a. 2.4×10^{-13}
 - b. 2.4×10^{-12}
 - e. 5.5×10^{-32}
 - d. 9.6×10^{-13}
 - e. 2.4×10^{-11}
- An unknown monoprotic acid was titrated with sodium hydroxide. If 0.1592g of the acid needed 11.40ml of 6.839 x 10⁻²M NaOH to reach the equivalence point, then the molecular weight of the acid is equal to:
 - a. 134.0 g/mole
 - b. 68.39 g/mole
 - c. 124.8 g/mole
 - d. 204.2 g/mole
 - e. 95.56 g/mole
- 0.5316g of impure sodium oxalate (Mwt = 134.0) sample was treated with permanganate solution 2.924 x 10⁻²M. The volume of the latter solution needed to completely react with the oxalate was equal to 43.31ml. The percent of pure sodium oxalate in the sample is equal to:
 - a. 31.66%
 - b. 42.42%
 - c. 23.63%
 - d. 13.90%
 - e. 79.80%
- Which of the following is incorrect:
 - a. Zinc, Nickel, and lead ions have charges of +2
 - b. Aluminum hydroxide is amphoteric while ferric hydroxide is not
 - c. Silver and Nickel from complexes with ammonia
 - d. Lead is able to form amphoteric hydroxide and amine complex
 - e. (c) and (d)
- What is true aqua regia:
 - a. A mixture of concentrated acids
 - b. Used to dissolve HgS
 - c. It is formed of HCl and HNO₃
 - d. (a) and (c)
 - e. All of the above

III. $\underline{A(10\%)}$

An unknown solid sample is suspected to be one out of the following salts:

CaCO₃, NaCl, PbCl₂, MgCl₂ or K₂CrO₄

Suggest a suitable procedure to guess what salt it is.

Gi	10%) ve two ions or compounds that can precipitate with Cl ⁻	n form:	
•	precipitate with SO ₄ ²⁻		
•	solution with excess OH		
•	complex with NH ₃		
•	colored flame upon burning		

IV. (21%) An unlabeled bottle is known to contain one of the following solutions. Describe a way to know what solution is in the bottle and write chemical equations where applicable.

a. AgNO₃

 $Pb(NO_3)_2$

b. CaCl₂

or

 $CuCl_2$

c. $Al(NO_3)_3$

or

 $Cu(NO_3)_2$

d. $Hg(NO_3)_2$

or

 $Hg_2(NO_3)_2$

e. NaCl or

NaNO₃

f. MgCl₂

or

FeCl₃

g. $Bi(NO_3)_3$ or

 $Fe(NO_3)_3$

V. (9%) Draw a flow chart that describes the procedure of the separation of the following cations if present in a mixture

$$Hg^{2+}$$
, Al^{3+} , Hg_{2}^{2+} , Cu^{2+}