The state of the s

Time:80'

Chem. 205

Final Exam

Jan 24,1996

H.Deeb

Family name:
First name :
Student number:
Section (day):
Maior:

Grading:

I	/49
II	/36
III	/30
IV	/42
V	/18
Total	/17

- I) Circle the letter that precedes the correct answer.
 There is only one correct answer (no double penalty)
 - * The weight data (grams) of successive 10.00 mls portions of a liquid using a Mettler balance is as follows:
 - 0.9512 , 0.9520 , 0.9532 , 0.9498 , 0.9524
 - a- The above set of measurement is accurate
 - b- The above set of measurement is precise
 - c- The above set of measurement is not precise
 - d- The absolute uncertainty of each of the above values is 0.0001g, if the weighing is done by difference.
 - In the titration of 24.5 ml of potassium hydroxide solution of unknown concentration ,35.7ml of 0.0550 M H₂SO₄ were required to neutralize the KOH solution in reactions where both hydrogen ions of the sulfuric acid react. The normality of KOH solution is:
 - a- 0.0801 N
 - b- 0.160 N
 - $c-0.160 \times 10^{-3} N$
 - d- 0.0377 N
 - The solubility product constant for BaCrO $_{\mu}$ is 2.00 x 10⁻¹⁰ at 20°C, the molarity of a saturated solution of BaCrO $_{\mu}$ at 20°C is:
 - $a 3.57 \times 10^{-3} M$
 - $b-1.41 \times 10^{-10} M$
 - $c-0.171 \times 10^{-2} M$
 - $d 1.41 \times 10^{-5} M$
 - * The solubilty of Hg_2Cl_2 (Ksp=1.20x10⁻¹⁸) in a solution of 0.030 M NaCl is:
 - $a 1.3 \times 10^{-15} M$
 - $b-1.3 \times 10^{-15} g/1$
 - $c 6.7 \times 10^{-7} M$
 - d-- 0.060 M

- * The concentration of barium ions in a solution at equilibrium when 7.50 ml of 0.400 M K_2 CrO $_4$ is added to 12.5 ml of 0.200 M BaCl $_2$ (Ksp of BaCrO_{$\frac{1}{4}$} = 1.4 x 10^{$\frac{2}{10}$}) is:
 - $a 2.8 \times 10^{-10} M$
 - b- 5.6 x 10⁻⁹ M
 - c- 0.200 M
 - d- 0.125 M
- * Pb⁺² and Hg₂⁺² can react with T^- ions to form respectively pbI₂ (Ksp=7.9 x 10⁻⁹) and Hg₂I₂ (Ksp=1.1 x 10⁻²⁸). For a mixture of equal concentrations of pb⁺² and Hg₂⁺²,
 - a- The concentration of I needed to precipitate pbI2 is more than that needed to precipitate $\mathrm{Hg}_2\mathrm{I}_2$
 - b- The concentration of I needed to precipitate pbI, is less than that needed to precipitate Hg_2I_2 than Hg_2I_3 when I_3 is added
 - c- Pb⁺² will precipitate faster than Hg₂⁺²
 - d- I can not be used to separate pb^{+2} and Hg_2^{+2} by fractional precipitation, even if the initial concentrations of pb +2 and ${\rm Hg}_{\rm O}^{+2}$ are varied
 - " AgCl and pbCl, are white salts,
 - a- pbCl₂ is more soluble than AgCl in aqueous solution
 - b- 1M K₂CrO₄ will dissolve AgCl, but not pbCl₂.
 - c- They both dissolve in 6M HNO3.
 - d- They both dissolve in 6M HCl.

- II) What is the reagent needed to separate each of the following pairs of ions when present in aqueous solution, include observations
 - pb^{+2} and Cu^{+2}
 - Ag^+ and Hg^{+2}
 - Fe^{+3} and Ca^{+2}
 - Mg^{+2} and K^{+}
 - Ca^{+2} and Na^{+}
 - $\mathrm{NH_4}^+$ and Al^{+3}

- A reaction done in one of the experiments, in which KMnO_4 served as its own indicator

- Confirmatory test of Cu^{+2} with the observation

- confirmatory test of Hg_{2}^{+2} with the observation

- ${\rm Al}^{+3}$ when heated with thioacetamide

- Amphoteric properties of $pb(OH)_2$

- IV) Answer each of the following questions breifly and clearly.
 - Why NH_3/NH_4^+ buffered solution is used to precipitate Al^{+3} and Fe⁺³ instead of conc. NaoH

- What is the disadvantage of using 6M HCl instead of 6M ${\rm HNO_3}$ to dissolve group II sulfides.

- How can you distinguish between the two white solids $(NH_4)_2$ C_2O_4 and NH_4C1 by simple visual means using a metal cation.

- One of the limitations for applying Bear's Law is to use λ max which can be determined experimentally.

Explain why λ max. and not any other λ at which absorption takes place.

Mention one other limitation for Bear's Law.

- Explain briefly using chemical equation/s why 6M HCL will precipitate Ag⁺, but fuming HCl will not.

- Account for the following:
Addition of dilute HCl to a saturated solution of AgCl will
decrease the solubility of AgCl, while when added to a saturated
solution of ZnCO₃, the solubility of ZnCO₃ is increased.

- Addition of basic NH₃ to a saturated solution of AgCl will reasonably increase the solubility of AgCl, while addition of basic Sodium Carbonate does not have any appreciable effect on solubility of AgCl.

- V) Solve the following problem, show your solution and report the answer to the proper number of significant figures. Be clear, uncomprehensible or vague calculations will not be considered.
 - $\stackrel{.}{\cdot}$ CO⁺² can be analyzed by treatment with a known excess of thiocyanate in the presence of pyridine: CO⁺² + 4 C₅ H₅ N + 2SCN[−] − CO(C₅H₅N)₄(SCN)₂(s)

The precipitate is filtered off, and the SCN content of the filtrate is determined by Volhard titration. A 25.00 ml unknown solution was treated with 3 ml of pyridine and 25.00 ml of 0.1028M KSCN in a 250-ml volumetric flask. The solution was diluted to the mark, mixed, and filtered. After the first few milliliters of filtrate were discarded, 50.0 ml of filtrate was acidified with HNO $_3$ and treated with 5.00 ml of 0.1055 M AgNO $_3$. After addition of Fe $^{+3}$ indicater, the excess Ag $^+$ required 3.76 ml of 0.1028 M KSCN to reach the Volhard end point. Calculate the CO $^{+2}$ concentration in the unknown.