🙎 : 1 hr. 30 min.

Chem. 205 Final Exam Jan. 20, 2000 S. Sadek

Family Name:	First Name:	
I.D. #:	Section:	
Instructor:		
	Score:	
•	I/ 30	
	II/ 36	
	HI/ 19	
•	IV/ 15	
,	Grade: / 100	

<u>I) A (12%)</u> Circle (T) for true statements and (F) for false ones:

- To prepare a primary standard solution, one can use a beaker provided that he can close its top tightly with parafilm paper.
- T F The equivalent weight of Al when it reacts with hydrochloric acid, to produce AlCl₃ and H₂, is equal to its molecular weight divided by 6.
- T F In the qualitative analysis of Groups II ions, sulfuric acid can be used to adjust the pH instead of hydrochloric acid.
- T F After performing the following operation $\frac{(5.32x11.030)+109.3}{8.4+202.6}$

The answer should be rounded to 4 significant figures.

- T F In the identification of aluminum, the dye should be added before ammonia because the dye adsorbs to the hydroxide while it is forming.
- T F Copper II and iron III can be separated by addition of excess base.
- T F Potassium thiocyanate was used in the Volhard analysis for chloride and in the qualitative analysis of Group III ions.
- T F A cation that forms a precipitate with chromate, sulfate and chloride is lead.

B (6%) Fill in the blanks:

is more than one which gives the weight of the same standard as 10.008 g.
Systematic errors reduce by systematically offsetting the observed data.
The subjectivity of the operator who takes the reading from some uniformly graduated scale can lead to a error.
errors result from insufficiently controlled variations in measurement conditions.
In a set of data, the degree of scatter is related to of the measurements.
A set of measurements is said to be if the relative average deviation from the mean is less than 2ppt.
C (12%) Define in writing one sentence: Solubility:
Primary standard:
Hygroscopy substance:
Amphoteric substance:
Flame test:
Group reagent:

II (36%) Circle the letter preceding the best answer:

The oxidizing agent and the reducing agent in the following reaction, are respectively:

$$Bi(s) + 4 HNO_3(aq) \rightarrow Bi(NO_3)_3(aq) + NO(g) + 2H_2O(l)$$

- a- HNO₃ and Bi(NO₃)₃
- b- HNO3 and Bi
- c- Bi and HNO₃
- d- Bi and NO
- e- This is not a redox reaction.

50.00 ml Na₂SO₄ 0.0152 M were mixed with 50.00 ml Ca(NO₃)₂ 0.0125M. Knowing that Ksp(CaSO₄) = 9.1 x 10^{-6} , and ionic product of XY is $[X]_0[Y]_0$.

- a- a precipitate will form
- b- no precipitate will form
- c- the ionic product is greater than Ksp.
- d- The ionic product is less than Ksp.
- e- (a) and (c)
- f- (b) and (c)

The molar solubility of $Ca_3(PO_4)_2$ whose $Ksp=1.2 \times 10^{-26}$ is given qualitatively by:

- a- $(Ksp/108)^{1/5}$
- b- $(Ksp/6)^{1/5}$
- $c (Ksp)^{1/5}$
- d- $(Ksp/108)^{1/2}$
- e- None of the above, my answer is ______.

Ammonia is a complexing agent and a source of hydroxide ion:

- a- It forms a solid with Al³⁺
- b- It forms a complex with Ag⁺
- c- It forms a solution with K
- d- It forms a solid with Fe³⁺
- e- (a), (b) and (d)
- f- All of the above are true statements.

Potassium and sodium ions can be identified by the flame test, by giving respectively:

- a- violet and red flames
- b- red and violet flames
- c- yellow and red flames
- d- violet and yellow flames
- e- yellow and violet flames

The confirmatory reagents for magnesium and copper are respectively

- a- K₂CrO₄ and K₄Fe(CN)₆
- b- Na₂HPO₄ and K₄Fe(CN)₆
- c- K2CrO4 and KSCN
- d- Na₂HPO₄ and KSCN
- e- None of the above.

Precipitation method is not a good way of separating

- a- Al³⁺ and Fe³⁺
- b- K⁺ and Ag⁺
- c- Na⁺ and NH₄⁺
- d- K⁺ and Ca²⁺
- e- None of the above.

A 5.00 ml aliquot of a standard iron (III) solution 8.393 x 10^{-4} M, was treated with a complexing agent X to form the iron(II)-X complex, and finally diluted to exactly 100.0 ml. The absorbance of the resulting solution was measured in 1-cm spectrophotometer cell and found to be 0.467 at 510 nm. The percent transmittance of the solution was:

- **a-** 34.1 %
- b- 46.7 %
- e- 33.0 %
- d- 53.3 %
- e- 17.3 %

The molar concentration (in M) and the molar absorpitivity (in M^{-1} cm⁻¹) of the iron(II) – X complex, in the previous question, were respectively:

- a- 4.20×10^{-3} and 1.96×10^{3}
- b- 8.39×10^{-4} and 5.57×10^{2}
- $c-8.39 \times 10^{-6}$ and 5.57×10^{4}
- d- 5.00×10^{-2} and 9.34×10^{2}
- e- 4.20×10^{-5} and 1.11×10^{4}

HI (19%)

A Chemistry 205 student was given five bottles containing five different metal nitrate solutions. To label the bottles, he tested each solution in the left column separately with a few drops of the reagents listed horizontally, and he recorded his observations.

norizontany, and	Sulfurie acid	Sodium chloride	<u>Ammonia</u>
Solution (1)	precipitate		
Solution (2)	precipitate	precipitate	precipitate
Solution (3)		precipitate	complex
Solution (4)		- -	complex
Solution (5)		precipitate	precipitate

After careful study of the above table:

a- Label the bottles; Bottle (1) contains

Bottle (2) contains

Bottle (3) contains

Bottle (4) contains

Bottle (5) contains

b- Write the formulas of the precipitates and of the complexes in the space provided in the above table.

IV (16%)

In one of the sessions of Chemistry 205, the instructor provided the students with a solution containing the cations listed below. Making use of precipitation, complex-forming and amphoteric characteristics, the brave students developed a simple procedure and separated the cations. Draw a flow chart that shows the steps followed in the separation. (Hint: The students used NaOH, NH₃ and HCl only; However, you may choose other reagents).

$$Sn^{2+}$$
 Fe^{3+} Zn^{2+} Cu^{2+} Ag^{+}

V (16%) Draw a flow sheet that describes how you can separate and identify the following ions when present in a mixture: Ag^+ , Pb^{2+} , Hg^{2+} , Cu^{2+} , Al^{3+} , Ca^{2+} , and Na^+