Time: 90'

Chemistry 205 Final Exam

June 4, 1997 H. Deeb

Ш____/20

IV _____/24

V ______/17

Total _____/175

Family Name:	
First Name:	
Student Nb.:	
Major:	
Section:	
	Grading:
	I/96
	H /18

I- Circle the letter that precedes the correct answer (there is only one correct answer)

* Silver chloride is insoluble in:

- a- Concentrated HCl
- b- Concentrated HNO3
- c- Concentrated NH₄OH
- d- All aqueous acidic or basic solutions.

* S can be attained by heating thioacetamide aqueous solutions.

- a- S⁼ can be used to precipitate group II and group III ions as sulfides when present as a mixture.
- b- In general qualitative analysis, S⁼ can be used to separate group II ions from other ions irrespective of the pH of the solution.
- c- All ions that can form insoluble sulfides with S⁼, react to give a black precipitate.
- d- Although S⁼ is group II reagent, it can precipitate group III, group II and some other ions.

* We can distinguish between $K_2C_2O_4$ and KCl solids, using a simple visual test, by:

- a-Dissolving in H₂O, only KCl will dissolve.
- b- Addition of Ca⁺⁺ ions in aqueous solution.
- c-Dissolving in dilute H₂SO₄.
- d- Addition of NH₄ ions in aqueous solution.

* To transfer an aliquot of an unknown for titration, the student should use:

- a- Volumetric flask of proper volume.
- b- Pipet of the appropriate volume.
- c- Graduated cylinder of proper volume.
- d- Erlenmeyer flask of proper volume.

* The answer of the following operation:

$$\frac{(2.65)^2 - 5.117}{40.933 \times (5.21 + 2.1)}$$
 reported to the proper number of significant

figures, using scientific notation is:

$$c-6.37 \times 10^{-3}$$

$$d-0.63 \times 10^{-2}$$

* A compound of molecular weight = 280, absorbed 65.0% of the radiation at a certain wave length in a 2.00 cm cell at a concentration of 0.0150~g/l. The Molor absorptivity of this compound is:

a-
$$6.06 \times 10^3$$

$$d-4.25 \times 10^3$$

* In the following unbalanced redox reaction:

$$C + H_2SO_4 \rightarrow CO_2 + SO_2 + H_2O$$

- a- The equivalent weight of the reducing agents is greater than the equivalent weight of the oxidizing agent.
- b- The equivalent weight of the oxidizing agent is greater than the equivalent weight of the reducing agent.
- c- In all its reactions, carbon has the same equivalent weight as in the above reaction.
- d- The above reaction can not take place and can not be balanced.

* The number of moles of NaOH that has to be added to 333 mls of water to produce a solution of pH = 12,67 is:

b-
$$7.12 \times 10^{-14}$$
 moles

- * The solubility of Ag₂ CrO₄ is 2.157 x 10⁻² g/l. Ksp of Ag₂ CrO₄ is:
 - $a 4.014 \times 10^{-5}$
 - b- 4.653 x 10⁻⁴
 - $c-1.099 \times 10^{-12}$
 - d- 4.226 x 10⁻⁹
- * The molar solubility of lead iodide in 0.200 M sodium iodide is:
 - $a-2.0 \times 10^{-7} M$
 - b- 1.3 x 10⁻³ M
 - $c-4.0 \times 10^{-8} M$
 - d- none of the above.
- * 25.0 ml of 0.0010 M AgNO₃ are mixed with 75.0 ml of 0.0010 M Na₂CO₃ Ksp of Ag₂CO₃ = 6.2×10^{-12} at 25°C
 - a- No precipitate of Ag₂CO₃ will form after mixing.
 - b- Ag₂CO₃ will precipitate upon mixing.
 - c- More Ag^+ has to be added to form the slightly soluble salt Ag_2CO_3 .
 - d- none of the above.
- * The molar concentration of the salt at the equivalence point of the complete titration of 0.500 N solution of H₂SO₄ with 10.0 ml of 0.25 M NaOH solution is:
 - a- 0.167 M
 - b- 1.25 x 10⁻³ M
 - c- 0.0833 M
 - d- 0.0416 M

II- The following reactions represent the solubility equilibrium for the given sparingly soluble salts.

given sparingly soluble salts.
a-
$$Zn CO_{3(s)} = Zn_{(aq)} + CO_{3(aq)}$$

b-
$$Zn S_{(s)}$$
 $=$ $Zn_{(aq)} + S_{(aq)}$

c-
$$Ni(OH)_{z(s)}$$
 \rightleftharpoons $Ni_{(aq)}^{\tau \ t}$ + $2OH_{(aq)}^{-}$

The solubility of these salts can be increased by adding a common reagent. What is this common reagent? Write chemical equations involved (if applicable) in each case to explain the function of this reagent in increasing the solubility.

- State if a precipitate will form or not upon mixing the compounds mentioned in each case. If so, write the formula of the precipitate and its color.
Aqueous solution of Fe ₂ (SO ₄) ₃ and sodium hydroxide.
Aqueous solution of calcium nitrate and potassium carbonate.
requebus solution of caretum intrate and potassium carbonates
Aqueous solution of sodium nitrate and lead acetate.
Aqueous solution of mercurous nitrate and potassium chloride.

IV- When the solution in each of the beakers in column I is mixed with the proper solution in a beaker in column II, a precipitate will form. Identify this proper solution by writing the number in the blank below, and write the net-ionic equation involved in each case.

П

Beaker 7: KI

Beaker 8: K₂SO₄

Beaker 5: pb(ClO₄)₂ Beaker 6: K₄Fe(CN)₆

I Beaker 1: AgNO ₃ Beaker 2: pb(NO ₃) ₂ Beaker 3: (NH ₄) ₂ CrO ₄ Beaker 4: Cu(NO ₃) ₂
a- Beaker 1 + Beaker Equation:
b- Beaker 2 + Beaker Equation:
c- Beaker 3 + Beaker Equation:
d- Beaker 4 + Beaker

Equation:

V- Solve the following problem, show your solution and report the answer to the proper number of significant figures.

A 1.331g sample of impure $Ba(OH)_2$ was dissolved in 250 ml of aqueous solution. A 35.0 ml portion of this solution was needed to titrate 17.6 ml of 0.0935 M HCl to the end point. What is the percent age purity of the original sample.