2.0 hours open book Exam.

- Solve on the answer booklet.
- Write clearly. Clarity is important in grading.
- Vectors are indicated in bold.
- Take $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ or $\mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}$.

No. 1- (25\%)
Crank $A B$ rotates about point A with a constant angular velocity of $95 \mathrm{rad} / \mathrm{s}$ clockwise

5\% 1- Draw the kinematic diagrams of velocity and acceleration of member BD when $\theta=60^{\circ}$.

10% 2- Determine the angular velocity of
member BD when $\theta=60^{\circ}$.
$10 \% 3$ - Determine the acceleration of piston P
when $\theta=60^{\circ}$.

No.2-(25\%)
pin Connected

The 4 kg uniform rod $A B D$ is/attached to the crank $\operatorname{at} A$ $B C$ and is fitted with a small wheel that can roll without friction along a vertical slot. At the instant shown crank $B C$ rotates with an angular velocity of $6 \mathrm{rad} / \mathrm{s}$ clockwise and an angular acceleration of $15 \mathrm{rad} / \mathrm{s}^{2}$ counterclockwise.
velocity f acc.

5\% 1- Draw the kinematic_diagrams of the rod $A B D$ and the crank $B C$ separately, for the position shown.

10\% 2- Determine the angular acceleration of rod $A B D$ for the position shown.

5\% 3-Draw the free body diagrams and the kinetic diagrams of rod $A B D$ for the position shown.

5\% 4- Determine the reaction at roller A.

A slender 4 kg rodican rotate in a vertical plane about a pivot at B. A spring of constant $k=400$ N / m and of unstretched length of 150 mm is attached to the rod as shown. The rod is released from rest in the position shown and rotates through 90°.

5\% 1- Draw the initial and the final free body diagrams of the rod.

5\% 2-Determine the work of the spring force for the motion.

5% 3-Determine the work of the weight for the motion.

10\% 4-Determine the angular velocity of the rod after it has rotated through 90°.

No. 4 (25\%)

The double pulley shown has a mass of 3 kg and about G a radius of gyration of 0.1 m . When the pulley is at rest, a vertical force P of magnitude 24 N is applied to cord B and sets the pulley in motion.

10\% 1- Draw the impulse and momentum diagrams of the pulley.

10\% 2- Determine the velocity of the center of the pulley after 1.5 seconds.

5\% 3-Determine the tension in the cord C.

