AMERICAN UNIVERSITY OF BEIRUT
 FACULTY OF ENGINEERING AND ARCHITECTURE MECH 230 - DYNAMICS - QUIZ 2

W. Najm

J. Kasamani
ID NO.

90 MINUTES OPEN BOOK QUIZ

1- Solve the problems on this question booklet in the given space.
2- Use the scratch booklet before writing on the question booklet.
3- The scratch booklet will not be collected and will not be graded.
4 - Neatness and clarity are important in grading.
PROBLEM 1: 20%
A particle of mass m moves with negligible friction on a horizontal surface and is connected to a light spring fastened at O. At position A the particle has the velocity $v_{A}=4 \mathrm{~m} / \mathrm{s}$ and direction as shown. At position B the particle has the velocity v_{B} as shown. The spring constant is $120 \mathrm{~N} / \mathrm{m}$.

1. Draw the impulse and momentum diagrams for the particle. (10 pts .)

$$
2 \otimes \text { Find } V_{B} \text { : }
$$

$m(4)$

initial momentum
diagram

$$
m(4) \sin 54^{\circ}(0.35)^{m}=m V_{B}(0.23) \sin 65^{\circ}
$$

$$
V_{B}=\frac{1.1326}{0.20845}=5.433
$$

$$
V B=5.433 \mathrm{~m} / \mathrm{s} \quad \text { Ans }
$$

$$
V B=\frac{4 \sin 54^{\circ} 0.35}{0.23 \sin 65^{\circ}}
$$

PROBLEM 2: 25\%
The $3000-\mathrm{kg}$ anvil A of the drop forge is mounted on a nest of heavy coil springs having a combined stiffness of $2.8 \times 10^{6} \mathrm{~N} / \mathrm{m}$. The $600-\mathrm{kg}$ hammer B falls 500 mm from rest and strikes the anvil, which suffers a maximum downward deflection of 24 mm from its equilibrium position.

500 mm (2) deter

1. Find the initial deflection of the springs at equilibrium due to anvil weight.

$$
\begin{aligned}
& F_{S}=k \Delta l . \\
& \Delta l=\frac{F_{S}}{K}=\frac{3000(9.81)^{\prime \prime}}{2.8 \times 10^{6} \mathrm{~N} / \mathrm{m}}=10.5107 \\
& \Delta l=0.0105107 \mathrm{~m}
\end{aligned}
$$

2. Find the velocity of hammer B just before impact.(7 pts.)

Hammer:

$$
V=\sqrt{2 g \Delta y}=\sqrt{2(9.81)(0.5)}
$$

$$
V_{B}=V_{h}=3.1321 \mathrm{~m} / \mathrm{s} \text { Ans. }
$$

3. Find the velocity of anvil A just after impact.(8 pts.)

ANVIL:

$$
\begin{gathered}
T_{1}+V_{1}=T_{2}^{\prime}+V_{2} \text { stop } V_{g_{2}}+V_{e 2} \\
\frac{1}{2} m_{A} V_{A}^{\prime 2}+m_{A} g \Delta Y=0+\frac{1}{2} k s_{2}^{2}
\end{gathered}
$$

$+1 / 2 k s_{1}^{2}$
Anvil: $\quad 24 \mathrm{~mm}$
$\frac{1}{2}(3000) V_{A}^{\prime 2}+3000(9.81)\left(\frac{24}{1000}\right)+\frac{1}{2}\left(2.8 \times 10^{6}\right)(0.0105107)^{2}=\frac{1}{2}\left(2.8 \times 10^{6}\right)\left(\frac{34.5107}{1000}\right)^{2}$

$$
1500 V_{A}^{\prime 2}+706.32+154.6647,1667.384
$$

$1500 \mathrm{~V}_{\mathrm{A}}^{12}+860.9847=1667.384$
total deflective $=$ $\begin{aligned} & 10.5107 \mathrm{~mm} \\ + & 24 \mathrm{~mm}=34.5107^{\mathrm{mm}}\end{aligned}$
$1500 V_{A}^{2}=806.3993: V_{A}^{\prime 2}=0.5376$
4. Find the height h of rebound of the hammer and the coefficient of restitution e which applies. (10 pts. @ 5 pts. each)
Hammer \& Anvil Impact:
 line of Canters $3000(0.7332)$

$$
\begin{aligned}
+1 \text { (vectors })_{y}: & -600(3.1321)=600 V_{B}^{\prime}-3000(0.7332) \\
& -1879.26=600 V_{B}^{\prime}-2199.6
\end{aligned}
$$

Hammer
After Impact: $T_{1}+T_{1}=T_{2}+T_{2}$

$$
600 V_{B}^{\prime}=320.34 ; \quad V_{B}^{\prime}=\frac{320.34}{600}=0.5339 \mathrm{~m} / \mathrm{s}
$$

$$
+5
$$

$$
\begin{aligned}
& \frac{1}{2} m_{B}^{\prime} V_{B}^{\prime 2}+0 \text { nation }=0+m_{B} \text { stol } h \\
& h=\frac{V_{B}^{12}}{2 g}=\frac{1}{2}(0.5339)^{2} / 9.81=0.0145285 \\
& h=14.529 \mathrm{~mm} \text { Ans } 0.0145 \mathrm{~m} \\
& +\uparrow e=\frac{V_{A}^{\prime}-V_{B}^{\prime}}{V_{B}^{\prime}-V_{A}} ;{ }^{+} \uparrow e=\frac{-0.7332-0.5339}{-3.1321-0^{\text {res }}}=\frac{1.2671}{3.1321}=0.4046 \\
& e=0.405 \text { Ans. }
\end{aligned}
$$

PROBLEM 3: 25\%
PART I (12 pts.@ 2 pts. each)
A car mechanic 'walks' two wheel/tire units across a horizontal floor as shown. He walks with constant speed v and keeps the tires in the configuration shown with the same position relative to his body. If there is no slipping at any interface and the radius of both tires is r, determine (in terms of v and r the following:

1. The angular velocity of the lower tire (magnitude and direction)

$$
V A=V=\omega_{l} r A / I c ; \omega_{l}=\frac{V}{r} 2 \text { Ans. } C \omega
$$

2. The angular velocity of the upper tire (magnitude and direction)

$$
\begin{aligned}
& \text { Dis the IC \&fzero nel. of opper tire } \\
& \therefore V_{C}=\omega_{\Delta} r_{C / I C} ; \omega_{\nu}=\frac{v}{1} \& \text { Ans. }
\end{aligned}
$$

3. The velocities of points A, B, C, and D. (magnitude and direction)

Page 5 of 8

PROBLEM 3 CONTINUED:

PART II (15 pts.)

The rear driving wheel of a car has a diameter of 650 mm and has an angular speed N of 200 $\mathrm{rev} / \mathrm{min}$ on an icy road. If the instantaneous center of zero velocity is 100 mm above the point of

$$
\begin{aligned}
& N=200 \frac{\mathrm{rev}}{\mathrm{~min}} \times \frac{2 \pi}{60} \\
& \omega=20.944 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

contact of the tire with the road:

1. Determine the velocity v of the car.(8 pts.)

$$
\begin{aligned}
& V_{\text {car }}=\omega r_{0} / I_{c}=20.944(0.225) \\
& V_{\text {car }}=4.712 \mathrm{~m} / \mathrm{s} \rightarrow \text { suss stent } \\
& 4.712 \hat{\mathrm{~cm}} / \mathrm{s} \text { with } \omega 2
\end{aligned}
$$

2. Determine the slipping velocity v_{s} of the tire on the ice.(5 pts.)

$$
\begin{aligned}
V_{S} & =\omega r_{A / I C} \\
V_{S} & =20.944\left(\frac{100}{1000}\right)=2.094 \mathrm{~m} / \mathrm{s} \& \text { Ans. }
\end{aligned}
$$

$$
-2.094 \hat{i} \mathrm{~m} / \mathrm{s} \text { Ans }
$$

PROBLEM 4: 30\%
The triangular plate $A B D$ has a clockwise angular velocity of $3 \mathrm{rad} / \mathrm{s}$ and link $O A$ has zero angular acceleration for the instant represented.

1. On the given figure locate the I C of zero velocity of plate $A B D .(5$ pts.) @point C .
2. Find velocity of points A and B.(5pts.)

$$
\begin{aligned}
& V_{A}=W_{A B D} r_{A / I C}=3(0.4)=1.2 \mathrm{~m} / \mathrm{s} 1 \text { Ans. } \\
& V_{B}=W_{A B D} r_{B / I C}=3(0.3)=0.9 \mathrm{~m} / \mathrm{s} \Rightarrow \text { Ans. }
\end{aligned}
$$

3. Find the angular velocity of links $O A$ and $B C$. (5pts.)

$$
\text { link OA: Fixed axis rotation } 0 \quad \omega_{0 A}=\frac{V A}{r_{A / 0}}=\frac{1.2}{0.3}=4 \mathrm{rad} / \mathrm{s} \mathrm{Ans} \text { A }
$$

$$
\operatorname{linkBG:} \quad \omega_{B S}=\frac{V B}{r_{B} / C}=\frac{0.9}{0.3}=3 \mathrm{rad} / \mathrm{s} \triangle \text { Ans. }
$$

4. Draw the absolute acceleration diagram for the mechanism(5pts.)

$$
\begin{aligned}
& \text { Given } \alpha_{0 A}=0 \Rightarrow a_{A E}=0
\end{aligned}
$$

$$
\begin{align*}
& \vec{a}_{B}= \vec{a}_{A}+\vec{\alpha}_{A B D} \times \vec{r}_{B / A}-\omega_{A B D}^{2} \vec{r}_{B / A} \\
& a_{B \in \hat{c}}-2.7 \hat{\jmath}=-4.8 \hat{\imath}+\alpha_{A B D} \hat{k} \times(0.4 \hat{\imath}+0.3 \hat{\jmath})-9(0.4 \hat{\imath}+0.3 \hat{\jmath}) \\
&=-4.8 \hat{c}+0.4 \alpha_{A B D} \hat{\jmath}-0.3 \alpha_{A B D} \hat{\imath}-3.6 \hat{\imath}-2.7 \hat{\jmath} \\
& \hat{c}: a_{B t}=-4.8-0.3 \alpha_{A B D}-3.6 \tag{1}\\
& \hat{\jmath}:-2.7=0.4 \alpha_{A B D-2.7}
\end{align*}
$$

Solve eq. (2) $0.4 \alpha_{A B D}=2.7-2.7=0 \Rightarrow \alpha_{A B D}=0$

$$
\begin{aligned}
& \alpha_{A B D}=0 \\
& \vec{\alpha}_{A B D}=\overrightarrow{0} \\
& \mathrm{rad} / \mathrm{s}^{2}
\end{aligned} \text { Ans. }
$$

$$
\begin{aligned}
& a_{B t}=-8.4 \mathrm{~m} / \mathrm{s}^{2} \\
& \Rightarrow a_{B t}=8.4 \mathrm{~m} / \mathrm{s}^{2} 4 \\
& a_{B t}=\alpha_{B C} \mathrm{r}_{B} / \mathrm{CABCA} \\
& \alpha_{B C}=\frac{8.4}{0.3}=28 \mathrm{rad} / \mathrm{s}^{2} \\
& \alpha B C=28 \mathrm{rad} / \mathrm{s}^{2} \mathrm{~J}
\end{aligned}
$$

