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 3.49  This problem asks for the determination of Bravais-Miller indices for several planes in hexagonal 

unit cells. 

 
 (a)  For this plane, intersections with the a1, a2, and z axes are ∞a, –a, and ∞c (the plane parallels both a1 

and z axes).  In terms of a and c these intersections are ∞, –1, and ∞, the respective reciprocals of which are 0, –1, 

and 0.  This means that 

  h = 0 

  k = –1 

  l = 0 

Now, from Equation 3.7, the value of i is 

 

    i = − (h + k) = −[0 + (−1)] = 1 

 

Hence, this is a   (01 10)  plane. 

 
 (b)  For this plane, intersections with the a1, a2, and z axes are –a, –a, and c/2, respectively.  In terms of a 

and c these intersections are –1, –1, and 1/2, the respective reciprocals of which are –1, –1, and 2.  This means that 

  h = –1 

  k = –1 

  l = 2 

Now, from Equation 3.7, the value of i is 

 

  i = − (h + k) = − (−1 − 1) = 2  

 

Hence, this is a   (1 1 22)  plane. 

 
 (c)  For this plane, intersections with the a1, a2, and z axes are a/2, –a, and ∞c (the plane parallels the z 

axis).  In terms of a and c these intersections are 1/2, –1, and ∞, the respective reciprocals of which are 2, –1, and 0.  

This means that 

  h = 2 

  k = –1 

  l = 0 

Now, from Equation 3.7, the value of i is 

 

    i = − (h + k) = − (2 − 1) = −1 
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