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 12.2  In this problem we are asked to show that the minimum cation-to-anion radius ratio for a 

coordination number of four is 0.225.  If lines are drawn from the centers of the anions, then a tetrahedron is 

formed.  The tetrahedron may be inscribed within a cube as shown below. 

 

 
 

The spheres at the apexes of the tetrahedron are drawn at the corners of the cube, and designated as positions A, B, 

C, and D.  (These are reduced in size for the sake of clarity.)  The cation resides at the center of the cube, which is 

designated as point E.  Let us now express the cation and anion radii in terms of the cube edge length, designated as 

a.  The spheres located at positions A and B touch each other along the bottom face diagonal.  Thus, 

 

  AB =  2rA  

 

But 

  (AB)2  =  a2 + a2 = 2a2 

 

or 

 

  AB =  a 2 =  2rA 

And 

 

  
a =  

2rA
2
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