

AMERICAN UNIVERSITY OF BEIRUT

ENGINEERING MATERIALS-MECH 340

QUIZ I-DEGREE FROM 100

STUDENT NAME:

ID:

DURATION: 1H10

Problem 1.(Parts 1 and 2 are independent)-(20 pts)

Part 1-(10 pts)
(a) Show that the cha ratio (height of unit cell divided by its edge length) is 1.633 for the ideal hep structure. (b) Comment on the fact that real hep metals display cha ratios varying from 1.58 (for Be) to 1.89 (for Cd). (You can use the following geometric configurations to solve part a)

Answer:

a-

$$
\begin{aligned}
& x=\frac{a / 2}{\cos 30^{4}}=0.5774 a \\
& h^{2}=a^{2}-x^{2}=a^{2}-(0.5774 a)^{2}=0.6667 a^{2} \\
& h=0.8165 a \\
& c=2 h=1.633 a \\
& \text { or } c / a=1.633
\end{aligned}
$$

b-
(b) Rather than perfect spheres, the atoms are effectively ellipsoids (due to some assymmetry in atomic bonding)

Part 2- (10 pts)

Data taken from a stress-strain test for a ceramic are given in the table. The curve is linear between the origin and the first point. Plot the diagram, and determine the modulus of elasticity and the modulus of resilience.

$\boldsymbol{\sigma}$ (ksi)	$\boldsymbol{\epsilon}$ (in./in.)
0	0
33.2	0.0006
45.5	0.0010
49.4	0.0014
51.5	0.0018
53.4	0.0022

$$
U_{r} \cong \frac{1}{2} \sigma_{y} \varepsilon_{y}
$$

Answer: (10 pts)

$\boldsymbol{\sigma}$ (ksi)	$\boldsymbol{\epsilon}$ (in./in.)
0	0
33.2	0.0006
45.5	0.0010
49.4	0.0014
51.5	0.0018
53.4	0.0022

Modulus of Elasticity : From the stress - strain diagram

$$
E=\frac{33.2-0}{0.0006-0}=55.3\left(10^{3}\right) \mathrm{ksi}
$$

Ans
Modulus of Resilience : The modulus of resilience is equal to the area under the linear portion of the stress - strain diagram (shown shaded).

$$
u_{r}=\frac{1}{2}(33.2)\left(10^{3}\right)\left(\frac{\mathrm{lb}}{\mathrm{in}^{2}}\right)\left(0.0006 \frac{\mathrm{in} .}{\mathrm{in} .}\right)=9.96 \frac{\mathrm{in} \cdot \mathrm{lb}}{\mathrm{in}^{3}} \quad \text { Ans }
$$

Problem 2- (15 pts)

We find that 10 h are required to successfully carburize a batch of 500 steel gears at $900^{\circ} \mathrm{C}$, where the iron has the FCC structure. We find that it costs $\$ 1000$ per hour to operate the carburizing furnace at $900^{\circ} \mathrm{C}$ and $\$ 1500$ per hour to operate the furnace at $1000^{\circ} \mathrm{C}$. Is it economical to increase the carburizing temperature to $1000^{\circ} \mathrm{C}$? What other factors must be considered?

Algorithm:

1- Find the required time to successfully carburize the batch of gears at $1000^{\circ} \mathrm{C}$
2- Find the cost per part
3- Compare between costs at 2 temperatures

$$
\frac{c_{s}-c_{x}}{c_{s}-c_{0}}=\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)
$$

Answer:

Again assuming, we can use the solution to Ficks's second law given by Equation 5-7

$$
\frac{c_{s}-c_{x}}{c_{s}-c_{0}}=\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)
$$

Note that, since we are dealing with only changes in heat treatment time and temperature, the term $D t$ must be constant.

To achieve the same carburizing treatment at $1000^{\circ} \mathrm{C}$ as at $900^{\circ} \mathrm{C}$:

$$
D_{1273} t_{1273}=D_{1173} t_{1173}
$$

At $900^{\circ} \mathrm{C}$, the cost per part is $(\$ 1000 / \mathrm{h})(10 \mathrm{~h}) / 500$ parts $=\$ 20 /$ part
At $1000^{\circ} \mathrm{C}$, the cost per part is $(\$ 1500 / \mathrm{h})(3.299 \mathrm{~h}) / 500$ parts $=\$ 9.90 /$ part

How to find D:

$$
\begin{gathered}
D_{1} t_{1}=D_{2} t_{2} \\
D=D_{0} \exp \left(\frac{-Q_{d}}{R T}\right)
\end{gathered}
$$

So $t_{2}=\exp \left(\frac{-Q_{d}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)\right) t_{1}=360000 \exp \left(\frac{-148 \times 10^{3}}{8.314}\left(\frac{1}{1173}-\frac{1}{1273}\right)=3 \mathrm{~h} 2 \min \right.$

Problem 3 (10 pts)- determine for each one of the listed properties if it belongs to an Edge dislocation or to a screw dislocation ($b=b$ burger vector)

- Has an extra half plane of atoms answer: Edge
- b is parallel to the dislocation line answer: Screw
- Dislocation moves perpendicular to b answer: Screw
- Moves on the plane containing b and the line answer: Edge
- Moves on any plane containing b and the line answer: Screw
- Cannot cross slip answer: Edge
- Can Climb answer: Edge

Problem 4- 20 pts

a. Calculate the diffusion coefficient of carbon in (i) Austenite ($=\gamma$-Fe see table 5.2) and (ii) Ferrite (α-Fe. See table 5.2) at $920^{\circ} \mathrm{C}$. User your knowledge to explain the difference between the two values. (10 pts)
b. A mild steel component (carbon content 0.2%) is to be case-hardened by placing it in a furnace in an atmosphere rich in hydrocarbon gas so that the surface concentration is 0.8% carbon. The design of the component requires that at the completion of this process, the carbon concentration at 1 mm below the surface will be 0.55%. The furnace is set at $1050^{\circ} \mathrm{C}$. Determine the time required for the heat treatment. (10 pts)

$$
D=D_{0} \exp \left(\frac{-Q}{R T}\right)
$$

Answer: From tables

For γ :

$$
\begin{array}{ll}
D=D_{0} e^{\left(-\frac{\varphi d}{R T}\right)} & \\
(X \mathrm{Fe}) & \varphi_{d}=148 \mathrm{~kJ} / \mathrm{ml} \\
& D_{0}=2.3 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}
\end{array}
$$

$\mathrm{T}=1193 \mathrm{~K}$.
So D1=7.77 $\times 10-{ }^{12} \mathrm{~m}^{2} / \mathrm{s}$

For α :

$\alpha\left(F_{C}\right)$

$$
\begin{aligned}
& \varphi_{d}=86 \times 10^{3} \\
& b_{0}=6.2 \times 10^{-7} \mathrm{~m}^{2 / 5}
\end{aligned}
$$

So D2=1.95 $\times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$

$$
D_{1}<D_{2} \Rightarrow \text { dithusion occurs at , leer rate in \& } F
$$

because it has FCC that is more packed that BCC .
b) $C_{0}=, 2.2$ th

$$
\begin{aligned}
& C_{5}=0.8 \text { wit } \quad C_{x}=0.55 w+1 . \\
& x=1,0 \times 10^{-3} \mathrm{~h}
\end{aligned}
$$

$$
T=13234
$$

$$
\frac{C_{x}-C_{0}}{C_{5}-C_{0}}=1-\operatorname{ert}\left(\frac{x}{2 \sqrt{D t}}\right) \Rightarrow 1-\left(\frac{1,55-\cdots 2}{0,8-\cdots 2}\right)=\operatorname{ert}\left(\frac{x}{2 \sqrt{1 D t}}\right.
$$

$$
\Rightarrow \quad 0,4161=\operatorname{erf}\left(\frac{x}{2 \sqrt{131}}\right)
$$

$$
\text { Using labs } \Rightarrow D \times t=1,161 \times 15^{-6}
$$

$$
\text { It } \begin{aligned}
& I=1323 \dot{\mathrm{k}} \quad D= \\
& \begin{aligned}
\Rightarrow(g) & \underline{f e} \\
& =+3.3 \times 15^{-5} e^{-\left(\frac{148 \times 10^{3}}{1323 \times 6.3)^{\prime}}\right)} \\
& =3.276 \times 10^{-11}
\end{aligned}
\end{aligned}
$$

Problem 4- (35 pts)

Part 1-(20 pts)

A tensile specimen is machined to a gage diameter of 0.357 -in and is marked with a starting gage length of $2-\mathrm{in}$. When subjected to a test, the following results were found:

- yield load $=2,000 \mathrm{lbf}$
- fracture diameter $=0.27$-in
- diameter at ultimate load $=0.31-\mathrm{in}$
- elastic modulus $=25 \times 10^{6} \mathrm{psi}$

After completing this test, you are informed that the tensile specimen had been plastically deformed some amount before it was machined and tested and that in this stage:

$$
\sigma=K \epsilon^{n} \text { with } \mathrm{n}=0.5
$$

Refer to data found on the following curve describing the history of actions during this experiment and answer to the following questions:

What is the yield strength Y for this specimen? ($\mathbf{7} \mathbf{~ p t s}$)

How much strain was induced by the unknown amount of plastic deformation at day 1 ? ($\mathbf{7} \mathbf{~ p t s)}$
What maximum load (i.e. Fu) was reached during the test? ($\mathbf{6} \mathbf{~ p t s)}$

Use:

$\epsilon=2 \ell n\left(\frac{D_{o}}{D}\right)$

Pre-strain: When considering necking, we must consider the curve representing the material and we can write $\epsilon_{\text {neck }}=n, \epsilon$ starting without pre-strain. So

$$
\begin{gather*}
\epsilon_{\text {neck }}=n=0.5=2 \ell n \frac{D_{o}}{D_{\text {neck }}} \tag{11}\\
\Rightarrow D_{0}=D_{\text {neck }} \exp \left(\frac{\epsilon_{\text {neck }}}{2}\right)=0.398-\mathrm{in} \tag{12}
\end{gather*}
$$

Pre-strain:

$$
\begin{equation*}
\epsilon^{\prime}=2 \ell n \frac{D_{o}}{D^{\prime}}=0.217 \tag{13}
\end{equation*}
$$

Maximum load: Let us first determine K from yielding point of Day:2 experiment:

$$
\begin{equation*}
\sigma^{\prime}=Y=K \epsilon^{\prime n} \Rightarrow K=\frac{Y}{\epsilon^{\prime n}}=42,892 \mathrm{psi} \tag{14}
\end{equation*}
$$

Let us use K and n at necking where the maximum load is applied.

$$
\begin{equation*}
\epsilon_{\text {neck }}=n, \sigma_{\text {neck }}=K \epsilon_{\text {neck }}^{n}=K n^{n}=30,329 \mathrm{psi} \tag{15}
\end{equation*}
$$

And

$$
\begin{equation*}
F_{u}=\frac{\pi D_{\text {neck }}^{2} \sigma_{\text {neck }}}{4}=2289 \mathrm{lbf} \tag{16}
\end{equation*}
$$

Part 2- (15 pts)

An annealed brass specimen of 0.505 -in starting diameter supports a maximum tensile load of $120,000-\mathrm{lbf}$ at which point the initial area is reduced by 40%. If a second identical specimen were loaded until the induced strain was half the magnitude of n, what load would be needed to reach this condition?
r is the reduction of area defined as

$$
r=\frac{A_{o}-A}{A_{o}}
$$

Use:

$$
\begin{aligned}
\epsilon_{\text {neck }} & =\ln \left(\frac{1}{1-\tau}\right) \\
\epsilon_{\text {neck }} & =n, \sigma_{\text {neck }}=K \epsilon_{\text {neck }}^{n}
\end{aligned}
$$

Answer:

From the first tensile specimen, we can infer K and n. Area reduction $=40 \% \Rightarrow \epsilon_{\text {neck }}=$ $\ln \left(\frac{1}{1-r}\right)=\ln \left(\frac{1}{1-0.4}\right)=0.51$ at necking. So, $n=0.51$.

Starting diameter: $0.505^{\prime \prime} \rightarrow D_{\text {neck }}-D_{c} \exp \left(-\frac{\xi_{\text {nack }}}{2}\right)=0.391^{\prime \prime}$.

$$
\begin{gather*}
\mathrm{UTS}=120,000 \mathrm{lbf} \Rightarrow \sigma_{\text {neck }}=\frac{4 \times \mathrm{UTS}}{\pi D_{\text {neck }}^{2}}=999 \times 10^{3} \mathrm{psi} \tag{17}\\
K-\frac{\sigma_{\text {neck }}}{n^{n}}=1409 \times 10^{3} \mathrm{psi} \tag{18}
\end{gather*}
$$

Second specimen: $\epsilon=\frac{n}{2}=0.255$.
So $\sigma=K \epsilon^{n}=702 \times 10^{3} \mathrm{psi}, D=D_{o} \exp \left(-\frac{\epsilon}{2}\right)=0.445^{\prime \prime}$.
And load $=\frac{\pi D^{2} \sigma}{4}=110,000 \mathrm{lbf}$.

Avogadro's number: $6.023 \times 10^{23} / \mathrm{mol}$
Gas Constant: $8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}, 1.987 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{K}$
Boltzmann's constant: $1.38 \times 10^{-23} \mathrm{~J} /$ atom $\cdot \mathrm{K}, 8.62 \times 10^{-5} \mathrm{eV} /$ atom $\cdot \mathrm{K}$

Table 5. 1 Tabulation of Error Function Values

\boldsymbol{z}	$\operatorname{erf}(\boldsymbol{z})$	\boldsymbol{z}	$\operatorname{erf}(\boldsymbol{z})$	\approx	$\operatorname{erf}(z)$
0	0	0.55	0.5633	1.3	0.9340
0.025	0.0282	0.60	0.6039	1.4	0.9523
0.05	0.0564	0.65	0.6420	1.5	0.9661
0.10	0.1125	0.70	0.6778	1.6	0.9763
0.15	0.1680	0.75	0.7112	1.7	0.9838
0.20	0.2227	0.80	0.7421	1.8	0.9891
0.25	0.2763	0.85	0.7707	1.9	0.9928
0.30	0.3286	0.90	0.7970	2.0	0.9953
0.35	0.3794	0.95	0.8209	2.2	0.9981
0.40	0.4284	1.0	0.8427	2.4	0.9993
0.45	0.4755	1.1	0.8802	2.6	0.9998
0.50	0.5205	1.2	0.9103	2.8	0.9999

Table 5.2 A Tabulation of Diffusion Data

Diffusing Species	Hosi Metal	$D_{0}\left(\mathrm{~m}^{2 / s}\right)$	Activation Energy Qd		Calculated Values	
			$\mathrm{kJ} / \mathrm{mol}$	eV/atom	$T\left({ }^{\circ} \mathrm{C}\right)$	$D\left(m^{2 / s}\right)$
Fe	α-Fe (BCC)	2.8×10^{-4}	251	2.60	$\begin{aligned} & 500 \\ & 900 \end{aligned}$	$\begin{aligned} & 3.0 \times 10^{-21} \\ & 1.8 \times 10^{-15} \end{aligned}$
Fe	$\begin{aligned} & \gamma-\mathrm{Fe} \\ & (\mathrm{FCC}) \end{aligned}$	5.0×10^{-5}	284	2.94	$\begin{array}{r} 900 \\ 1100 \end{array}$	$\begin{aligned} & 1.1 \times 10^{-17} \\ & 7.8 \times 10^{-16} \end{aligned}$
C	$\alpha-\mathrm{Fc}$	6.2×10^{-7}	80	0.83	$\begin{aligned} & 500 \\ & 900 \end{aligned}$	$\begin{aligned} & 2.4 \times 10^{-12} \\ & 1.7 \times 10^{-10} \end{aligned}$
C	γ-Fe	2.3×10^{-5}	148	1.53	900 1100	$\begin{aligned} & 5.9 \times 10^{-12} \\ & 5.3 \times 10^{-11} \end{aligned}$
Cu	Cu	7.8×10^{-5}	211	2.19	500	4.2×10^{-19}
Zn	Cu	2.4×10^{-5}	189	1.96	500	4.0×10^{-18}
Al	Al	2.3×10^{-4}	144	1.49	500	4.2×10^{-14}
Cu	Al	6.5×10^{-5}	136	1.41	500	4.1×10^{-14}
Mg	Al	1.2×10^{-4}	131	1.35	500	1.9×10^{-13}
Cu	Ni	2.7×10^{-5}	256	2.65	500	1.3×10^{-22}

[^0]
[^0]: Source: E. A. Brandes and G. B. Brook (Editors), Smithells Metals Reference Book, 7th edition, ButterworthHeinemann, Oxford, 1992.

