

EXAM (two hours)

NAME:	,	ID#	Sect
section 1.	10TT & 3F		Dr. Zableet
section 2.	9MWF		Dr. Trad
section 3.	10MWF		Ms,Rahhal-Arabi
section 4.	11MWF		Dr. Katul
section 5.	12 MWF		Dr. Bodakian

Conversion factors and physical constants

1 atm = $1.01 \times 10^5 \text{ Pa} = 760 \text{ mmHg}$

1 calorie = 4.186 Joules

 $\rho = 1.06 \times 10^3 \text{ kg/m}^3$ Density of blood

 $\eta = 4.0 \times 10^3 \text{ N.s/m}^2$

Viscosity of blood acceleration due to gravity $g = 9.8 \text{ m/s}^2$

Young's modulus $Y_{Al} = 7.0 \times 10^{10} \text{ N/m}^2$ $Y_{Cu} = 12 \times 10^{10} \text{ N/m}^2$ Coefficient of linear expansion $\alpha_{Cu} = 17 \times 10^6 \text{ K}^{-1}$

 $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2.\text{K}^4$ Stefan's Constant

R = 8.31 J/mol.KUniversal gas constant $k = 1.38 \times 10^{-23} \text{ J/K}$ Boltzman constant

 $N_A = 6.023 \times 10^{23}$ molecules/mol Avogadro's number

PART A (30 %) Encircle correct answer or provide it

1.	. If r is the ratio of t any gas	he speed of sound	and the molecular rms	speed in a gas then for
	a) r > 5/9	b) r = 1.0	c) 0 < r < 1/3	d) 1/3 < r < 5/9
	e) none of the abo	ve, my answer is _		
2.	Using a soap soluti bubble of radius 1.	on for which the s 1 cm. The energy	surface tension is 0.025 expended in stretching	N/m, a child blows a soap the bubble surface is (in µJ)
	a) 9.5	b) 71	c) 38	d) 18
	e) none of the above	ve, my answer is _		
3.	W ₁ is of aluminum	i diameter 1.6 mm	and that supporting W	19th. The wire supporting $\frac{1}{2}$ is of copper diameter $\frac{1}{2}$ $\frac{1}{2}$
4.	In an isobaric proce	ess the density of a	gas is	
	(a) proportional to	temperature T	(b) independent of T	(c) proportional to 1/T
	is (are):			l images of a real object
		~	onvex mirror (d)concar ×	ve mirror (e) plane mirror
	f) none of the above	/e.		·
	light in the coating i	s λ , the best choi	n a nonreflecting layer. ce is a layer of material air and minimum thick	If the wavelength of the having an index of ness of
,	a) λ	b) λ / √2	(₀c) λ/2	d) λ/4

Part B (70%) Encircle correct answer or provide solution

5.3	b) 4.2	c) 3.1	d) 2.0	
e) none of the above, my answer is				
neat engine ut	ilizes the cycle show	n in Fig. 1. where proce	ss BC is isothe	
		n in Fig. 1. where proce	ss BC is isothe	
	sing entries in the fo			
		llowing table (SI units)	Δ U (J)	
Fill in the mis	sing entries in the for $\Delta Q(J)$	llowing table (SI units)		

III- The radiative power of a hot body can be trebled by trebling its temperature.

Find this temperature.

<u>Solution</u>

4

• 7. Dispersion by a	diffraction grating is	a consequence of	
b) the interferec) the dependent	nce of many coherer	nt sources incident light on inde	the index of refraction
8. A transverse sin displacement a	e wave has an ampli at position x = 10 cm	tude A = 0.50 cm and is (in cm)	d a wavelength $\lambda = 30$ cm. Its
a) 0.25	(b) 0.43	c) 0.36	d) 0.5
e) none of the	above, my answer is		
9. Light propagation	on through an endos	cope can be explained	đ by
(a) refraction	(b) diffraction	(c) dispersion	(d) total internal reflection
10. A solid block of above the surfa	of wood ($\rho = 0.7$ g/c ace of water is (in %)	cm ³) floats on water.	The fraction of its volume
a) 60	b) 40	c) 30	d) 10
e) none of the	above, my answer is		
11. A copper wire	is 305 cm long at 72	2 ⁰ F. Its length at 30) ^O F is
(a) 2.2 mm sho	rter (b) 1.2 mm sl	horter (c) 2.2 mm	longer (d) 1.2 mm longer
e) none of the a	bove, my answer is		
surface area of	f the body is 1.9 m ² :		n at 20°C, is 28°C. If the total d absorbtivity of human skin is on's body is (in W)
a) 46	b) 58	c) 66	d) 76
e) none of the	above, my answer is		
			(

	ure of 0.30 atm flows through the control of 0.30 L/s. At one points-sectional area to 0.80 c	t in the thire bivi	C TO WITH COM-	
a) 57	b) 40	c) 27	d) 17	
e) none of the a	above, my answer is			
II- A myopic eye	has a near point 15 cm a	nd a far point 33	cm.	
1. The power	of the lens that corrects the	he distance vision	n is (in D)	
a) + 2.0	b) -2.0	c) + 1.5	d) -1.5	
e) none of	the above, my answer is			
2. The range	e of clear vision is (in cm))		
a) before	correction			
b) after c	orrection:			
III- A balloon o heat is requir atmospheric <u>Solution</u>	ccupies a volume of 16 n ed to raise the temperatur pressure.	n ³ when filled wi re of the gas to 6	th helium at STP. How 00°C if the balloon expa	muc mds a
V= 16m3		(e		

Program Down

chur she va

•

a) 0.73	b) 2.6	c) 1.3	d) 0.32
e) none of the abo	ove, my answer is		
and the average	e spaced 1.7 m apart. If wavelength of daylight is m angular separation for n)	s 500 nm	
a) 0.18	b) 0.24	c) 0.19	d) 0.25
e) none of the	ne above, my answer is		
2. A passenger a height of (in an airplane can just r in km)	esolve the two rails v	when the plane reaches
a) 5.7	b) 8.4	c) 7.5	d) 9.1
-			
e) none of the	ne above, my answer is		· ······

1. The distan	nce of the fina	al image from	I . is (in cm)	·
		_	·	
. a) -17	b) 10	c) 12	d) 25	
e) none o	of the above, r	my ans wer is _		
2. The imag	ge is:			.:
a) real, i	nverted, reduc	cod b) virt	ual, inverted, reduced	
c) real, e	rect, magnific	ed 'd) virt	ual, erect, magnified	11
e) nonc	of the above,	my answer is		{
3. The ma	gnification of	the system is		
first car is 90 k tones of the sar	m/h and that ome frequency	of the second : 424 Hz. Calc	opposite directions. This 60 km/h. The horns culate the frequency that d in air 331 m/s).	of both cars emit
first car is 90 k tones of the sar coming from the	m/h and that ome frequency he other car (of the second : 424 Hz. Calc	is 60 km/h. The horns culate the frequency tha	of both cars emit
first car is 90 k tones of the sar coming from the clution	m/h and that ome frequency he other car (of the second of 424 Hz. Calc speed of sound	is 60 km/h. The horns culate the frequency that d in air 331 m/s).	of both cars emit

1 = 424 (V

,59