EECE 370 Handout 2
<u>Three-Phase Circuits – Appendix A</u>
What are the advantages that three-phase ac power systems have over single-phase ac power systems?
1. More power per kilogram.
2. Instantaneous power is constant.
3. Induction motors start without special auxiliary starting windings.

Three-phase circuits are those in which the forcing function is a three-phase system of voltages

What are the conditions for a three-phase system of voltages to be *balanced*?

- 1-
- 2-

If the loads are such that the currents produced by the voltages are also balanced, the entire circuit is referred to as a balanced.

Find the expression of the instantaneous power in a three-phase circuit.

<u>Three-Phase Connections</u>

Balanced three-phase voltage source

Line-to-neutral voltages

Y-connected loads

$\Delta\text{-connected loads}$

Source/Load Connections

*Balanced Y-Y Connection

Positive sequence, balanced Y-Y three-phase circuit. Source $V_{\phi}=120$ Vrms. $\hat{Z}_{line}=1+j1$ Ω . $\hat{Z}_{Y}=20+j10$ Ω .

Determine the line currents.

Determine the phase voltages at the load.

Determine the line voltages at the load.

$*\Delta$ -connected Source \mathbf{V}_{an} $\mathbf{V}_{ca}(\mathbf{x})$ \mathbf{V}_{ab} \mathbf{V}_{bc}

Example:

$*\Delta$ -connected Load

A delta-connected load consists of 10 Ω resistance in series with 20 mH inductance. The source is Y-connected, abc sequence, 60 Hz, $\tilde{V}_{an}=120 \angle 30^\circ$ Vrms. Determine the line currents and the phase currents in the Δ -connected load.

Power Relationships

Per-phase real power:

Per-phase reactive power:

In terms of phase/line quantities

Total (three-phase) real power:

Total (three-phase) reactive power:

Total (three-phase) complex power:

Total (three-phase) apparent power:

A three-phase balanced wye-delta system has a line voltage magnitude of 208 Vrms. The line impedance is negligible. The total real power absorbed by the load is 1200 W and the power factor angle of the load is 20°. Determine the magnitude of the line current and the value of the load impedance per phase in the delta.

The following balanced three-phase loads are served by a balanced three-phase source:

Load 1: 24 kW at PF = 0.6 lagging

Load 2: 10 kW at PF = 1

Load 3: 12 kVA at PF = 0.8 leading

The magnitude of the line voltage at the load is 208 Vrms, and the line impedance is $0.05 + j0.02 \Omega$.

- a) Determine the magnitude of the line current and the combined power factor at the load.
- b) Determine the magnitude of the line voltage and the power factor at the source.

Power Factor Correction

Example: in the previous diagram, f=60 Hz, $V_L=34.5$ kVrms, required PF = 0.9 lagging. Find C.