EECE 370 – Quiz 1 – Fall 2011 – Problems

A 40 kVA, 480/4800 V, step-up transformer has the following equivalent circuit parameters:

$R_p = 25 \text{ m}\Omega$	$X_p = 57.5 \text{ m}\Omega$	(Low-voltage side)
$R_s = 2.5 \ \Omega$	$X_s = 5.75 \ \Omega$	(High-voltage side)
$R_c = 500 \ \Omega$	$X_M = 100 \ \Omega$	(Low-voltage side)

Use the approximate equivalent circuit referred to the primary (low-voltage) side to answer the following two questions.

1. If the transformer is operating at full load with a power factor of 0.8 lagging, find the magnitude of the applied voltage to the primary winding (in V).

a. 489.1 ** b. 498.3 c. 507.5 d. 516.7 e. 526.1 S=40*1E3 Rp=25E-3 Rs=2.5 Xp=57.5E-3 Xs=5.75 Rc=500 XM=100 Reqp=Rp+(480/4800)^2*Rs Xeqp=Xp+(480/4800)^2*Xs Ip=S/480 Vp=480+(Reqp+i*Xeqp)*Ip*(0.8-0.6i) mag Vp=abs(Vp)

- 2. If a voltage of 480 V is applied to the primary winding while the secondary winding is connected to a resistive load that draws the rated current, find the total losses (in W)?
 - a. 9141.4
 - b. 6016.4
 - c. 3585.8
 - d. 1849.7
 - e. 808.0 **

Psc=Reqp*Ip.^2 + 480^2/Rc

- 3. A 75 kVA, 220/480-V single phase power transformer has a per-unit core-loss resistance (Rc) of 100 pu and a per-unit magnetizing reactance (Xm) of 80 pu. Find the excitation current (in A) when rated voltage is applied to the low-voltage winding.
- a. 2.2727 j2.8409 b. 3.4091 - j4.2614 ** c. 4.5455 - j5.6818 d. 5.6818 - j7.1023 e. 6.8182 - j8.5227 S=75*1E3 Rc_pu=100 Xm pu=80

```
Iex pu=1/Rc pu+1/(i*Xm pu)
```

```
Iex=Iex pu*S/220
```

The following data were obtained when a 25-kVA, 2300/460 V, 50 Hz transformer was tested:

	Voltage (V)	Current (A)	Power (W)
Open-circuit test	460	1.5	550
Short-circuit test	108.7	10.87	750

Refer to this data for questions 4 and 5.

4. Find the magnetizing reactance (X_m) referred to the low voltage side (in Ω).

```
a. 376.4
b. 404.5
c. 445.0
d. 507.8 **
e. 621.0
Voc=460
Ioc=1.5
Poc=550
Soc=Voc*Ioc
Qoc=sqrt(Soc^2-Poc.^2)
XmL=Voc^2./Qoc
```

- 5. Find the equivalent series resistance (R_{eq}) referred to the low voltage side (in m Ω).
 - a. 270.8
 b. 253.9 **
 c. 237.0
 d. 220.0

```
e. 203.1
Vsc=108.7
Isc=10.87
Psc=750
ReH=Psc/Isc^2
ReL=ReH*(460/2300)^2*1000
```

- 6. A 6.6 kVA, 440/220-V, 50 Hz step-down transformer has an equivalent series impedance of $3 + j4 \Omega$ referred to the primary (high-voltage) side. The transformer is operating at full load with a power factor of 0.6 leading. Determine the efficiency of the transformer (in %).
- a. 94.6 b. 92.1 c. 89.8 d. 87.6 e. 85.4 ** S=6.6*1E3 I=S/440 Pout=S*0.6 Pin=Pout+3*I.^2 eff=Pout./Pin*100
- 7. Fig. 1 shows a ferromagnetic core with a depth of 10 mm having a small air gap of 0.5 mm. The relative permeability of the core is 2000 and the coil has N_T = 500 turns and carries a current of *I*= 1.5A. Other dimensions are shown in the figure. The fringing in the air gap increases its effective cross-sectional area by 5%. What is the magnetic flux density in the airgap?
 - a. 1.422 T
 b. 1.675 T **
 c. 1.342 T
 d. 1.257 T
 e. 1.109 T

Fig. 1: Simple Ferromagnetic core

Ac=10E-3*10E-3 Ag=1.05*Ac g=0.5*1E-3 lc=4*30E-3-g u0=4*pi*1E-7 u=2000*u0 N=500 I=1.5

Phi=N*I./(lc./(u*Ac)+g/(u0*Ag)) Bg=Phi./Ag

- 8. Fig. 2 shows a non-uniform ferromagnetic core with dimensions as shown on the figure with the depth of the core being 50mm. The air gap width is L_G = 0.5mm. The relative permeability of the core is 3500 and the number of turns in each coil is N_T = 200 turns. The fringing in the air gap increases its effective cross-sectional area by 5%. What is the maximum current (I_{max}) that will keep the highest flux density in the core below a saturation level of 1.2T?
 - a. 0.672 Ab. 0.781 A
 - c. 0.454 A^{**}
 - 1 0.704 A
 - d. 0.596 A
 - e. 0.530 A

Fig. 2: Non-uniform core with two windings

```
u0=4*pi*1E-7
u=3500*u0
lc1=((50-5)+2*((20-2.5)+7.5))*1E-3
Ac1=5E-3*50E-3
g=0.5*1E-3
lc2=(50-5)*1E-3-g
Ac2=15E-3*50E-3
Ag=1.05*Ac2
N1=200
B1=1.2
Phi=B1*Ac1
Imax=(lc1./(u*Ac1)+lc2./(u*Ac2)+g/(u0*Ag))*Phi/(2*N1)
```

Consider the one-line diagram of a balanced three phase system shown in Fig. 3. Load 1 is Y-connected and has a phase impedance is $Z_{\phi 1} = 4 \angle 35^{\circ} \Omega$, and Load 2 is Δ -connected and has a phase impedance of is $Z_{\phi 2} = 8 \angle 30^{\circ} \Omega$. The capacitor bank is Δ -connected and has a phase impedance of $Z_{\phi C} = 24 \angle -90^{\circ} \Omega$. This data will be used in the following two problems.

Fig. 3: Balanced three phase system

9. When switch *S* is open and the generator line voltage is 480 V, what are the active and reactive powers supplied by the generator?

```
a. 122.01 + j76.24 kVA **
b. 113.69 + j71.44 kVA
c. 91.20 + j56.99 kVA
d. 128.61 + j80.37 kVA
e. 84.99 + j53.40 kVA
Z1=4
th1=35*pi/180
Z2=8
th2=30*pi/180
Zc=24
VL=480
PT=3* (VL/sqrt(3)).^2/Z1*cos(th1)+3*VL.^2./Z2*cos(th2)
```

```
QT=3*(VL/sqrt(3)).*2/Z1*cos(th1)+3*VL.*2./Z2*cos(th2)
QT=3*(VL/sqrt(3)).*2/Z1*sin(th1)+3*VL.*2./Z2*sin(th2)
```

```
ST=(PT+i*QT)/1000
```

- 10. When switch S is closed and the line current in Load 1, $I_{L1}= 68 \angle -35^{\circ}$ A, what is the reative power supplied by the capacitor?
 - a. 20.81 kVAr
 - b. 27.74 kVAr **
 - c. 41.62 kVAr
 - d. 33.29 kVAr
 - e. 23.78 kVAr

```
IL1=68
VL=sqrt(3)*IL1*Z1
```

```
Qc=3*VL.^2./Zc/1000
```