EECE 370 - Quiz 1 - Fall 2011 - Problems
A $40 \mathrm{kVA}, 480 / 4800 \mathrm{~V}$, step-up transformer has the following equivalent circuit parameters:

$$
\begin{array}{lll}
R_{p}=25 \mathrm{~m} \Omega & X_{p}=57.5 \mathrm{~m} \Omega & (\text { Low-voltage side }) \\
R_{s}=2.5 \Omega & X_{s}=5.75 \Omega & \text { (High-voltage side) } \\
R_{c}=500 \Omega & X_{M}=100 \Omega & \text { (Low-voltage side) }
\end{array}
$$

Use the approximate equivalent circuit referred to the primary (low-voltage) side to answer the following two questions.

1. If the transformer is operating at full load with a power factor of 0.8 lagging, find the magnitude of the applied voltage to the primary winding (in V).
a. $489.1^{* *}$
b. 498.3
c. 507.5
d. 516.7
e. 526.1
```
S=40*1E3
Rp=25E-3
Rs=2.5
Xp=57.5E-3
Xs=5.75
Rc=500
XM=100
Reqp=Rp+(480/4800) ^2*Rs
Xeqp=Xp+(480/4800)^2*Xs
Ip=S/480
Vp=480+(Reqp+i*Xeqp)*Ip*(0.8-0.6i)
mag_Vp=abs(Vp)
```

2. If a voltage of 480 V is applied to the primary winding while the secondary winding is connected to a resistive load that draws the rated current, find the total losses (in W)?
a. 9141.4
b. 6016.4
c. 3585.8
d. 1849.7
e. $808.0^{* *}$

Psc=Reqp*Ip.^2 $+480^{\wedge} 2 / R c$
3. A $75 \mathrm{kVA}, 220 / 480-\mathrm{V}$ single phase power transformer has a per-unit core-loss resistance (Rc) of 100 pu and a per-unit magnetizing reactance (Xm) of 80 pu . Find the excitation current (in A) when rated voltage is applied to the low-voltage winding.
a. 2.2727-j2.8409
b. $3.4091-\mathrm{j} 4.2614^{* *}$
c. $4.5455-\mathrm{j} 5.6818$
d. $5.6818-\mathrm{j} 7.1023$
e. 6.8182-j8.5227

```
S=75*1E3
Rc_pu=100
Xm_pu=80
Iex_pu=1/Rc_pu+1/(i*Xm_pu)
Iex=Iex_pu*S/220
```

The following data were obtained when a $25-\mathrm{kVA}, 2300 / 460 \mathrm{~V}, 50 \mathrm{~Hz}$ transformer was tested:

	Voltage (V)	Current (A)	Power (W)
Open-circuit test	460	1.5	550
Short-circuit test	108.7	10.87	750

Refer to this data for questions 4 and 5.
4. Find the magnetizing reactance $\left(X_{m}\right)$ referred to the low voltage side (in Ω).
a. $\quad 376.4$
b. 404.5
c. 445.0
d. $507.8 * *$
e. 621.0
$\mathrm{VOC}=460$
Ioc=1. 5
$\mathrm{POC}=550$

SOC=VOC* IOC
Qoc=sqrt (Soc^2-Poc.^2)
$\mathrm{XmL}=\operatorname{Voc}^{\wedge} 2$. / Qoc
5. Find the equivalent series resistance $\left(R_{e q}\right)$ referred to the low voltage side (in $\mathrm{m} \Omega$).
a. 270.8
b. 253.9 **
c. 237.0
d. 220.0
e. 203.1

```
Vsc=108.7
Isc=10.87
Psc=750
ReH=Psc/Isc^2
ReL=ReH* (460/2300)^2*1000
```

6. A $6.6 \mathrm{kVA}, 440 / 220-\mathrm{V}, 50 \mathrm{~Hz}$ step-down transformer has an equivalent series impedance of $3+\mathrm{j} 4 \Omega$ referred to the primary (high-voltage) side. The transformer is operating at full load with a power factor of 0.6 leading. Determine the efficiency of the transformer (in $\%$).
a. 94.6
b. 92.1
c. 89.8
d. 87.6
e. $85.4^{* *}$
```
S=6.6*1E3
I=S/440
Pout=S*0.6
Pin=Pout+3*I.^2
eff=Pout./Pin*100
```

7. Fig. 1 shows a ferromagnetic core with a depth of 10 mm having a small air gap of 0.5 mm . The relative permeability of the core is 2000 and the coil has $N_{T}=500$ turns and carries a current of $I=1.5 \mathrm{~A}$. Other dimensions are shown in the figure. The fringing in the air gap increases its effective cross-sectional area by 5%. What is the magnetic flux density in the airgap?
a. $\quad 1.422 \mathrm{~T}$
b. $1.675 \mathrm{~T}^{* *}$
c. $\quad 1.342 \mathrm{~T}$
d. 1.257 T
e. 1.109 T

Fig. 1: Simple Ferromagnetic core

```
Ac=10E-3*10E-3
Ag=1.05*Ac
g=0.5*1E-3
lC=4*30E-3-g
u0=4*pi*1E-7
u=2000*u0
N=500
I=1.5
Phi=N*I./(lc./(u*Ac) +g/(u0*Ag))
Bg=Phi./Ag
```

8. Fig. 2 shows a non-uniform ferromagnetic core with dimensions as shown on the figure with the depth of the core being 50 mm . The air gap width is $L_{G}=0.5 \mathrm{~mm}$. The relative permeability of the core is 3500 and the number of turns in each coil is $N_{T}=200$ turns. The fringing in the air gap increases its effective cross-sectional area by 5%. What is the maximum current $\left(I_{\max }\right)$ that will keep the highest flux density in the core below a saturation level of 1.2 T ?
a. $\quad 0.672 \mathrm{~A}$
b. 0.781 A
c. $0.454 \mathrm{~A}^{* *}$
d. 0.596 A
e. 0.530 A

Fig. 2: Non-uniform core with two windings

```
u0=4*pi*1E-7
u=3500*u0
lc1=((50-5)+2*((20-2.5)+7.5))*1E-3
Ac1=5E-3*50E-3
g=0.5*1E-3
lc2=(50-5)*1E-3-g
Ac2=15E-3*50E-3
Ag=1.05*Ac2
N1=200
B1=1.2
Phi=B1*Ac1
Imax=(lc1./(u*Ac1) +lc2./(u*Ac2) +g/(u0*Ag))*Phi/(2*N1)
```

Consider the one-line diagram of a balanced three phase system shown in Fig. 3. Load 1 is Y-connected and has a phase impedance is $Z_{\phi 1}=4 \angle 35^{\circ} \Omega$, and Load 2 is Δ-connected and has a phase impedance of is $Z_{\phi 2}=8 \angle 30^{\circ} \Omega$. The capacitor bank is Δ-connected and has a phase impedance of $Z_{\phi C}=24 \angle-90^{\circ} \Omega$. This data will be used in the following two problems.

Fig. 3: Balanced three phase system
9. When switch S is open and the generator line voltage is 480 V , what are the active and reactive powers supplied by the generator?
a. $\quad 122.01+\mathrm{j} 76.24 \mathrm{kVA} * *$
b. $\quad 113.69+\mathrm{j} 71.44 \mathrm{kVA}$
c. $\quad 91.20+\mathrm{j} 56.99 \mathrm{kVA}$
d. $\quad 128.61+\mathrm{j} 80.37 \mathrm{kVA}$
e. $84.99+\mathrm{j} 53.40 \mathrm{kVA}$

```
Z1=4
th1=35*pi/180
Z2=8
th2=30*pi/180
Zc=24
VL=480
PT=3*(VL/sqrt(3)).^2/Z1*cos(th1)+3*VL.^2./Z2*cos(th2)
QT=3*(VL/sqrt(3)).^2/Z1*sin(th1)+3*VL.^2./Z2*sin(th2)
ST=(PT+i*QT)/1000
```

10. When switch S is closed and the line current in Load $1, I_{L 1}=68 \angle-35^{\circ}$ A, what is the reative power supplied by the capacitor?
a. 20.81 kVAr
b. $27.74 \mathrm{kVAr}^{* *}$
c. 41.62 kVAr
d. 33.29 kVAr
e. 23.78 kVAr

IL1=68
VL=sqrt(3)*ILI*Z1
Qc=3*VL.^2./Zc/1000

