\$PRING 47-98

CHEMISTRY 208 Final

Family Name _______
First Name ______
ID No

Instructions

Answer all questions

All answers must be clearly indicated by a vertical line in the box of your choice on the answer sheet as indicated below:

If you make a mistake cross it out, as indicated below:

 \square

There is only one correct answer per question
There is no penalty for a wrong answer
If more than one box is filled per question (except to cross out mistakes), then that question will not be graded.

1.	How many carbon a. 2 b. 3	s lie in a straight li c. 4 d. 6	ne in 2-methyl-3	3-hexyne?	
	Acid-catalyzed hyd a. $(CH_3)_2C = 0$ b. $CH_2 = C(OH)C$		C	:. (СН ₃) ₂ С(ОН) ₂ l. СН ₃ СН ₂ СНО	
3.	Which is the corre	ect order of decrea	sing basicity in	the anions	
	HO- A	NH ₂ - B	HC≡C ⁻ C	CH ₃ CH ₂ - D	$CH_2 = CH^-$ E
	a. A > B > C : b. D > E > B :	> D > E > C > A	c. C > B > d. D > E >	D > A > E C > B > A	
a. 2 b. 3 2. Acid-ca a. (CH b. CH, S. Which b. CH, S. What to the control of the	What is the order	of stability of the f	following alkene	s?	
	$(CH_{*})_{2}CHCH = C$ A		С=СНСН, В	(Z)— CH , CH = $CHCH$,	$(E) - CH_{s}CH = CHCH_{s}$ D
	a. A > B > D > C b. B > D > C > A		c. B > A > D > d. A > B > C >		
	a. loss of OH= to b. loss of water to c. protonation of t d. loss of a proton Which compoun a. 2,3-dimethyl-	torm a carbocation torm a carbocation torm a carbocation the —OH group to the troin the alcohol to the distribution of the pentene to the torm and the troin the troin the alcohol to the troin and the troin and the troin are the troin and the troin are troin and troin are troin and troin are troi	n of form a protonat of form a carboca ydes upon treatn c.	nent with O_3/Zn ? 2,3-dimethyl-2-pentene	
7.	b. 3,3-dimethyl-Acid-catalyzed 1 a. 2-methyl-1-bib. 2-methyl-2-bi	sydiation of 2-methatinol	hyl-2-butene yie c.	2,4-dimethyl-2-pentene lds 3-methyl-2-butanol 3-methyl-1-butanol	
٤.	·	nole of HCl to 1,3 -chlorobutane	-butadiene, follo	owed by one mole of bromin mo-4-chlorobutane	e yields
9.	A. They have the B. They have the C. They have the D. They have the E. They have the	llowing is not true the same boiling por the same melting por the same chemical r the same reactivity we the same density, the same specific ro the control of the same chemical the same specific ro the control of the same specific ro the control of the same specific ro	int. sint. eactivity with ar with chiral reage	chiral reagents.	-
10	Mhich of the fa. 1-bromobu B. 3-bromohe C. t-butyl chlo D. sec-butyl c. E. isobutane a. B b. C	xane oride	nds have chiral c	earbons?	

c. 2-chloro-2-methylbutane

d. neopentylchloride

a. 1-chlorobutane

b. 2-chlorobutane

- The function of FeBr₃ in Friedel-Crafts alkylations is
 a. to form a complex with benzene, thus increasing its reactivity.
 b. to complex with the carbocation, thus stabilizing it.
 c. to abstract the halide from the alkyl halide, thus forming a carbocation.
 d. to abstract the proton from the σ complex and regenerate the aromatic ring.
 - 23. The electrophile in the nitration reaction of benzene is _____ a. HNO $_3$ c. NO $_2$ b. HNO $_2$ /H $_2$ SO $_4$ d. NO $_2$ +
 - 24. The major mononitration product of the following compounds is

- Which of the following is not a *meta*-directing substituent in electrophilic aromatic substitutions?

 a. $-N(CH_j)_{3}^{+}$ c. -C = N
 - b. $-NO_2$ d. $-NHCOCH_3$
- 26. The most reactive and the least reactive compound towards nitration are

benzene	acetophenone	toluene	chloromethyl benzene	chlorobenzene	phenol
A	B	C	D	E	F
a. F/B b. A/B	c. C/F d. F/L				

27. Which is the incorrect resonance formula in the nitration of anisole?

- 28. Which compound will produce only one alkene from E^{z} elimination?
 - a. 1-bromo-3-methylbutane
- c. 3-bromopentane
- b. 2-bromopentane
- d. 2-bromo-2-methylbutane
- $\mathcal{Z}\hat{q}$. What is the first step in the reaction of cyclohexanol with HBr to produce 1-bromocyclohexane?
 - a. nucleophilic attack of Br to displace OH-
 - b. loss of OH⁻ to form the carbocation
 - c. protonation of the -OH group to form -OH,*
 - d. concerted mechanism: as the C—OH bond breaks, the C—Br bond is formed
- 30. Give the best route for the synthesis of this alcohol:

31.	The reaction of t-buty a. $(CH_3)_2C = CH_2 + b$. $(CH_3)_3COCH_3 + c$	el bromide and sodium : CH ₃ OH + NaCl NaCl	methoxide yields c. (CH ₃) ₃ CO ⁻ No d. ClCH ₂ C(CH ₃)	a* + > CH ₃ Cl) ₂ O=Na*	
32.	Which combination of CH ₃ O=Na* A	of reagents would afford C ₆ H ₃ Br B	I the highest yield CH ₃ I C	d of methyl pheny C ₆ H ₅ O [—] Na* D	l ether
	a. A and C b. B and D	c. A and B d. C and D			
33.	Which reagent is use a. LiAlH ₄ b hot HI	d in the cleaving of eth- c. hot KMnO ₄ /H d. conc. NaOH			
34.	Kank the following i	n order of decreasing b	oning point:		
	СИ,СООСН,	(CH ₃) ₂ CHCH ₂ CH	, CH ₃ C	CH ₂ CH(OH)CH ₃	СН,СН,СООН
	A	В		С	D
	a. A > B > C > I b. A > D > C > I	c. B > D d. D > C	> A > C > A > B		
3S.	Which of the follow	ving alcohols yields a c	arboxylic acid wl	nen treated with h	ot KMnO ₄ ?
	(СН,),СНОН	(CH ₃) ₂ CHCH ₂ OF	H (CH	I,),CCH,OH	(CH ₃) ₃ COH
	A	В		С ,	D
	a. all but D b. B and C	c. only B d. A and			
36	a. stronger; the cb. stronger; the cc. weaker; the all	are acids than arboxylate anion is dest arboxylate anion is stab soxide anion is more barboxyl group is more st	abilized by reson illized by resonan sic because of the	ance ice e alkyl group's ind	ductive effect xxylate anion
37	a. carboxylic acid b. alcohol -OH c c. alcohol -OH c	d esterification of a car d—OH group, which dis on the carboxylate anion on the protonated carbor on the neutral carbonyl o	splaces the protor a. ayl of the acid.	an alcohol involv nated hydroxyl gro	ves the attack of the pup of the alcohol.
3 .	Which of the form a. (CH ₃ CH ₂ CO) b. CH ₃ CH ₂ COO	ollowing is hydrolyzed to CH ₃ C c. CH ₃ C d. CH ₃ C	the slowest by base H ₂ CONH ₂ CH ₂ COOCH ₃	se?	
3	9. Which is the va. N-methylani		zylamine	c. aniline	d. cyclohexylamine
4	a. glucose is act b. it is hydrolyz c. it is a ketone,	ution of glucose behaves ually a cyclic aldehyde ed by water to the free a but is in equilibrium w ant form (the cyclic hem	aldehyde. ith the aldehyde	form.	free aldehyde form.
L	41. Which compoun a. NH,	d would not form an im b. CH ₃ CH ₂ NH ₂	-	enzaldehyde?	d. (CH ₃ CH ₂) ₂ NH

42.	Reaction of N,N-dimethylanil a. benzene diazonium chlorid b. N-methyl-N-nitrosoaniline	e c. p-nitroso-	ls N,N-dimethylanilin	ie			
43.	Reaction of compound A with NaNO ₂ /H* followed by water yields <i>p</i> -methylphenol. A is therefore a. N-methlaniline b. <i>p</i> -methylaniline c. (<i>p</i> -methylphenyl)methylamine d. N,N-dimethylaniline						
44.	Which procedure removes the a. diazotization and acidifica b. reduction with LiAlH ₄ or H	tion with dilute H ₂ SO ₄	c. reduction	n with Sn/HC ation and furt	\mathbb{C}^{1} ther reaction with \mathbb{H}_{j}	PO,	
45.	Which compound will not rea a, phenol b. benze		yield an azo dye? ethylaniline	d. 2-na	phthol		
46.	Which compound reacts with a. N-methylaniline	benzenesulfonyl chloride b. pyridine	to give a product to c. aniline	nat is insolut d. N,N-	ble in basic <i>and</i> acididimethylaniline	c mediun	
47.	What is the correct descending COOH CI-	g order in acid strength of COOH B		pounds?	O_2N — O_2	соон	
	a. A > D > C > B b. B > A > D > C	c. C > D > A > B d. D > B > A > C					
48.	Which of the following is corra. It is a reducing sugar. b. It undergoes mutarotation is c. It hydrolyzes to fructose and. It reacts with Fehling's and	n water. d glucose.					
49.	The existence of α-glucose a a, the existence of two confeb, the existence of two enants, the formation of a cyclic but the presence of a keto/ald	rmational isomers of gluc iomers of glucose, iemiacetal of glucose.	cose.				
so.	Which of the following combinations is correct? Aldehydes						
45. Waa 46. aa 47. Waa a. b. c. d. 49. Ta a. d. 4	A are more reactive than keto B are more easily oxidized the				cetones toward nucle d than ketones.	ophiles.	
	a. A, B b. C, D	c. A, D	d. B,C			•	

ANSWER SHEET

Family	Name	
First	Name	
-D ¼ ∪		

	A	В	C	D	
1					
2					
3					
4					
5			<u> </u>		
6					
8					1
9		<u> </u>	_	<u> </u>	-
1.0					-
1			<u> </u>		4
12					-
13					4
1.	4 -		_		4
1					
	6	_			\dashv
	7			_	\dashv
1	9				-
	ol .				7
1	1				⊣
	22				1
7	23				7
2	24 25 26				
	25 i				
	26				
	27				
	28				
	29				
	30				
	31				
	32		-		
ļ	33				_
	34				
	34 35 36				
	351				
<u> </u>	37				
	38				
	39 40				
	41				
	42				
	43				
	44				
-	45	 			
	46				
	47				
	48				_
	49				
<u> </u>	50				