Time: 2 hours

Chem. 208 Final Exam June 24, 1999 Mrs. Deeb Mrs. Jaber

Family Name:		
First Name:		
I.D. #:		
Section:		
	Grading:	
	I	/ 40
	п	/ 24
	III	/ 40
	IV	/ 12
	V	/ 40
	VI	/24
	VII	
	Total	/ 200

<u>I (40%)</u> Circle the letter preceding the right answer in each of the following. (Note: no double penalty).

• Which of the following does not represent an optically active compounds?

c.
$$Br \longrightarrow H$$
 $C_2H=$

• Which of the following has a bond formed by the overlap of an sp² hybrid orbital with an sp hybrid orbital?

b.
$$CH_3-C\equiv C-CH_2CH_3$$

• Which of the following has the highest resonance stabilization?

c.
$$CH_3-C-O^TNa^+$$

• Which of the following has the lowest boiling point?

a.
$$H-C-N(CH_3)_2$$

d.
$$CH_3-CH_2-OCH_3$$

• Which of the following reactions will not take place?

b.
$$+ CH_3-C-C1$$
 AlCl₃

- Which is the most acidic of the following compounds?
- a. C₆H₅OH
- b. C₆H₁₁OH
- c. (CH₃)₃COH
- d. p-Nitrophenol
- Which of the following compounds has the highest number of stereogenic centers?

b. OH

d. (CH₃)₃C-CH₂-CH₂Cl

- Which of the following can form more than one product in significant yield upon nitration?
- a. p-nitrotoluene
- b. p-dichlorobenzene
- c. o-methoxytoluene
- d. m-dibromobenzene

• Which of the following molecules are aromatic?

- a. A, B, D
- b. B, D, E
- c. B, C, D
- d. A, D
- Which of the following molecules are not aromatic?

- a. B, C, E
- b. B, C, D
- c. A, C, E
- d. C, D

H (24%) 1)

1- a. Draw the structure of $2 - O - (\alpha - D - glucopyranosyl) - \beta - D - fructofuranoside.$

- b. Give the common name of the above sugar.
- c. Will the above sugar give a +ve Fehling's test? Will it mutarotate? Explain briefly.

- d. Hydrolysis of the above sugar yields _____ and ____.
- 2) a. Draw the Haworth projection of D-(+)-Allose, knowing that it is an epimer of D-(+)-glucose at C # 3.

b. Draw the structure of the reduction product of D-(+)-allose with NaBH₄.

c. Is the product optically active?

III (40%) Answer the following questions after careful examination of the given structures.

The structure of D-glyceraldehyde is ______
The structure of L-glyceraldehyde is _____

2)
$$-NH_{2} \longrightarrow NH_{2} \longrightarrow NH_{2} \longrightarrow -NHCH_{3}$$

$$-A- -B- -C- -D-$$

Compound _____ is the most basic Compound ____ is the least basic

3)
$$N = CH(CH_3)_2$$

$$-A = -B = -B$$

Compound _____ is an amide
The IUPAC name of this amide is _____

Compound _____ is the <u>least</u> reactive towards dehydrohalogenation.

Compound _____ is the <u>most</u> reactive towards electrophilic aromatic substitution.

Compound _____ is the <u>least</u> reactive towards electrophilic aromatic substitution.

The most acidic H's are _____

The least acidic H's are _____

IV (12%) Write equations for a simple chemical test to distinguish between.

a) - p-toluidine and N-methylaniline.

b) - Benzyl alcohol and p-cresol (p-hydroxytoluene)

V (32%) Predict the structure of the major organic product(s) in each of the following reactions.

4)
$$\frac{1. \text{ Excess PhMgBr}}{2. \text{ H}_3\text{O}^{\top}}$$

8)
$$(CH_3)_2$$
 + HONO $H^+ \rightarrow 0^{\circ}C$

VI (24%) Outline the steps for the synthesis of the following compounds from the given starting material and any needed organic or inorganic reagents.

VII (20%)

1) Write a detailed step by step mechanism for the following reaction.

CH₃C-(CH₂)₄-C-OCH₂CH₃ 1. CH₃CH₂O N₂
$$\rightarrow$$
 CH₃CH₂OH 2. H⁻

2) Fill in the missing reagents needed in each of the three steps required to carry out the following trans_formation.

1

2 _____

3 _____