Time: 2 hrs

Chemistry 208
Final Exam

August 26, 1997 H. Deeb

Family Name:	
--------------	--

First Name :

Student No. :

Grading

I /20
II /20
III /20
III /20
IV /18
V /08
VI /14

/100

Total

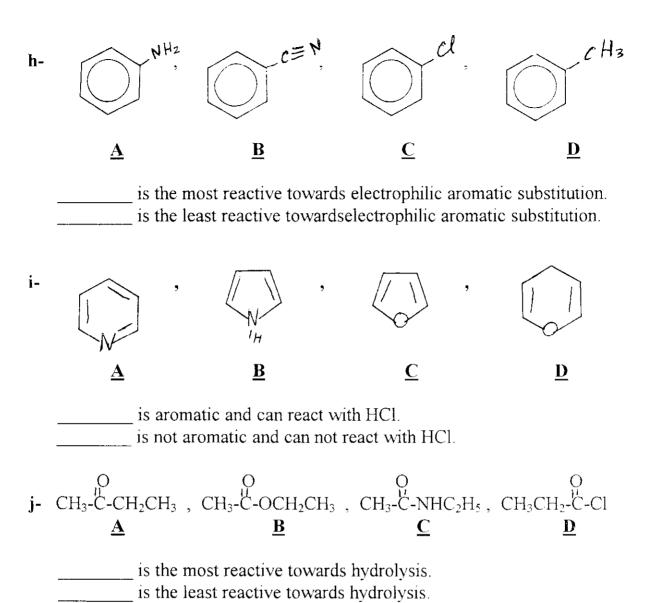
I) Draw the structure of each of the following:

a- An aldohexose which yields optically in active product upon oxidation with nitric acid.

b- Methyl-α-D-gluco pyranoside using Haworth projection.

c- A disaccharide that shows negative test with Fehling's or Benedict's solution and name it.

d- A disaccharide that can show mutarotation and name it.


e- An optically inactive α -aminoacid.

 f - An α -amino acid with a basic side chain and name it.
g- N-ethyl-p-toluamide.
$\mbox{{\bf h-}}$ The β -anomer of a compound that gives the same osazone as D-glucose.
i- A compound that gives positive Br ₂ /CCl ₄ test and a white precipitate when treated with NaNH ₂ .
j - A compound that liberates N_2 gas upon treatment with nitrous acid.

II) Fill the blanks of each of the following with the proper letter, after careful examination of the given structures.

CH₃ CH₃ CH₃ - C- CHCH₃ CH₃CH₂CH₂CH₂OH , $\mathbf{\underline{B}}$ $\underline{\mathbf{A}}$ CH_3 CH₃CH-CHCH₃ , CH2CHCH2CH3 ÓH ĊH₃ ÓΗ <u>C</u> \mathbf{D} is the most reactive towards dehydration. is the least reactive towards dehydration. \mathbf{B} <u>C</u> $\overline{\mathbf{D}}$ <u>A</u> is the most reactive towards E₂. is the least reactive towards E₂. c- $\underline{\mathbf{C}}$ $\underline{\mathbf{D}}$ \mathbf{B} <u>A</u> is the most reactive towards SN². is the most reactive towards SN^2 .

d-	$CH_3CH_2CH_2Br$, $\underline{\mathbf{A}}$	$CH_3CH=CH-Br$, $\underline{\mathbf{B}}$	CH ₃ C≡C-Br <u>C</u>			
	has the strongest C-Br bond. has the weakest C-Br bond.					
e-	,	3°,	Br.			
	<u>A</u>	<u>B</u>	<u>C</u>	D		
	strong	base. east reactive toward	ds dehydrohalogenat ds dehydrohalogenat			
f-	CH ₃ CH MgBr ,	$(CH_3)_3 CO^-Na^+$,	$Na^{+}NH_{2}$, $Na^{+}O_{2}$ $\underline{\mathbf{C}}$			
	is the strongest base. is the weakest base.					
g-	CH3 CH3,	CH3	CH3,			
	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>		
			ivity and cis-trans is but cannot show cis			

III) Predict the major organic product(s) of each of the following reactions, if NO reaction takes place, write "No Reaction".

$$\mathbf{a} - \mathbf{CH}_3 - \mathbf{C} - \mathbf{O} - \mathbf{C} - \mathbf{CH}_3 + \bigcirc$$

$$d$$
-
 CH_2OH
 CH_3-C-CI
 OH
 OH

e- + CH₃Cl
$$\rightarrow$$

f-
$$CH_3CH_2C\equiv C-H$$
 $\xrightarrow{1-NaNH_2}$ $\xrightarrow{2-CH_3I}$

h- CH₃CH₂-C-CH₃
$$\xrightarrow{1-\text{CH}_3\text{NH}_2}$$
 $\xrightarrow{2-\text{NaBH}_3\text{CN}}$

i- R-C-N
$$CH_3$$
 + LiAlH₄ \rightarrow CH_3

j-
$$CH_3$$
 C - $CHCH_3$ + $(CH_3)_3$ CO heat ,

IV) Prepare each of the following from the indicated starting materials and any needed organic or inorganic reagents.

V) Fill in the missing reagents needed in each step to perform the following transformation:

$$C(CH_3)_3 \qquad C(CH_3)_3 \qquad C(CH_3)_4 \qquad C(CH_3$$

VI) a- Given the following reaction $H_3^{C} \setminus N^{-C_2 \mid J_5}$ + HONO $\frac{J_1^{+}}{O^{*}C}$

Write a detailed mechanism for the above reaction and includeall the resonance contributing structures for the intermediate, if applicable.

b- Given two reactions:

1-
$$H_3C$$
+ CH_3OH
+ CH_3OH
+ H_3C

If the R enantiomer is used, it will lead to the S enantiomer in equation (1), and to both the R & S enantiomers in equation (2). Explain