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-

OBJECTIVES

I Learn recursive definitions
I Learn base and general cases in a recursive definition
I Appreciate recursive algorithms and the divide and

conquer concept
I Learn recursive functions
I Learn how recursive functions implement recursive

algorithms
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TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOI EXAMPLE
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DEFINITIONS -

RECURSIVE DEFINITIONS

I Recursion: solving a problem by reducing it to smaller
versions of itself

I factorial: recursive definition
I 0! = 1 if n = 1 (1): the base case
I n! = n × (n − 1)! if n > 0 (2) : the general case
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DEFINITIONS -

RECURSIVE DEFINITIONS — 2
I A recursive definition defines a structure in terms of a

smaller version of itself.
I Every recursive definition must have at least one base

case.
I The general case must eventually reduce the definition into

the base case.
I The base case stops the recursion (reduction of the

problem).
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DEFINITIONS -

RECURSIVE ALGORITHMS

I Recursive algorithms are solutions that reduce the problem
into smaller versions of itself.

I MUST have at least one base case.
I The problem MUST eventually reduce to one of the base

cases.
I A recursive function is an implementation of recursion

definitions and algorithms.
I It is a function that calls itself.
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FUNCTIONS -

RECURSIVE FUNCTIONS

I Consider the execution of a recursive function as the
execution of several copies of the recursive function.

I Each call to a recursive function has its own:
I code,
I parameters (argument),
I local variables,
I return value, and
I control: knows where to return when done (who called it)
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FUNCTIONS -

RECURSIVE FUNCTION CONTROL

I When one of the calls to the recursive function completes
control returns to the calling function

I could be another version of the function, or
I could be the original call of the recursive function

I Execution in the calling function resumes from the point
immediately following the call.
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FUNCTIONS -

EXAMPLE FACTORIAL

I factorial(n)
I 1 if n = 0
I n ∗ (n − 1)! if n ≥ 1

int factorial(int n) {
// n is a non-negative integer
if (n == 0) {
return 1;

} else {
int factNMinusOne = fact(n-1);
return n*factNMinusOne;

}
}
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FUNCTIONS -

ALTERNATIVE factorial IMPLEMENTATION

int factorial(int n) {
// n is a non-negative integer
if (n == 0) {
return 1;

}
return n*fact(n-1);

}
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FUNCTIONS -

EXECUTION OF THE factorial IMPLEMENTATION
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FUNCTIONS -

INDIRECT RECURSION

I Direct recursion: a function calls itself.
I Indirect recursion: a function f calls other functions that

eventually end up calling f .
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FUNCTIONS -

INFINITE RECURSION

I Infinite recursion: every function call results in a recursive
function call.

I In theory it executes forever
I Because computer memory is finite:

I Computer executes until it runs out of memory to make
copies of function variables.

I Unexpected results in terms of termination status of the
program.

I Important: If not intended, it is usually the result of
I missing base case
I the smaller version of the problem does not reduce to the

base case
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FUNCTIONS -

TRACKING RECURSION

I Consider function:
void f(int n) {
cout << n < " " ;
if (n >= 1) {
f(n-1);}

}

I Call function:
f(10);

I Result: 10 9 8 7 6 5 4 3 2 1 0
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FUNCTIONS -

TRACKING RECURSION - 2
I Consider function:

void g(int n) {
if (n >= 1) {
g(n-1);}

cout << n < " " ;
}

I Call function:
g(10);

I Result: 0 1 2 3 4 5 6 7 8 9 10
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TWO-WAY RECURSION -

REDUCING A PROBLEM TO TWO SIMILAR PROBLEMS

SMALLER IN SIZE

I Fibonacci numbers:
I a1 = 1
I a2 = 1
I an = an−1 + an−2 if n ≥ 3

I Given n compute the Fibonacci number of n.
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TWO-WAY RECURSION -

FIBONACCI NUMBERS THE ITERATIVE WAY

int FibNum(int n)
{

if(n==1 || n==2) { return 1;}
int previous1=1, previous2=1, current;
for(int i=3; i<=n; i=i+1) {

current = previous1+previous2;
previous2 = previous1;
previous1 = current;

}
return current;

}
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TWO-WAY RECURSION -

RECURSIVE IMPLEMENTATION FOR FIBONACCI

NUMBERS

I Fibonacci numbers:
I a1 = 1
I a2 = 1
I an = an−1 + an−2 if

n ≥ 3
I Given n compute the

Fibonacci number of n.

int recFibNum(int n) {
// the two base cases
if(n==1 || n==2) { return 1;}
else {

// first recursive call
int prev1 = FibNum (n-1);

// second recursive call
int prev2 = FibNum(n-2);
// merge the result
return prev1 + prev2;

}
}
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TWO-WAY RECURSION -

ALTERNATIVE RECURSIVE FIBONACCI NUMBERS

I Fibonacci numbers:
I a1 = 1
I a2 = 1
I an = an−1 + an−2 if

n ≥ 3
I Given n compute the

Fibonacci number of n.

int recFibNum(int n) {
// the two base cases
if(n==1 || n==2) { return 1;}

// Note that the else keyword
// can be omitted
return FibNum (n-1) + FibNum(n-2);

}
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TWO-WAY RECURSION -

TRACK THE RECURSION OF recFibNum
I Try recFibNum(5) and draw its recursion execution tree.
I Compare to FibNum(5).
I Which one is faster?

I recFibNum is not efficient at all compared to fibNum.
I Why?
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TWO-WAY RECURSION -

recFibNum VS. FibNum
I The recFibNum repeats solving same smaller size

problems several times.
I recFibNum(5) calls recFibNum(4) and recFibNum(3)

I recFibNum(4) calls recFibNum(3) and recFibNum(2).
I Notice recFibNum(3) will be solved at least twice.
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DESIGN -

DESIGNING A RECURSIVE FUNCTION

I Identify the recursive structure:
I Define the solution of the general problem in terms of

solutions of smaller versions of the problem.
I Make sure the smaller solutions eventually reduce to one of

the base cases.
I Identify base cases, and provide direct and simple

solutions to each base case
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DESIGN - BINARY SEARCH

BINARY SEARCH REVISITED

I Recall the array search problem given in Programming
Assignment 4

I Given an array a with n elements and value v
I Check if a contains an element with the same value of v

and return its index,
I Otherwise return -1.
I a is sorted in non-decreasing order

I Sequential-search checks v against all elements of the
array a. It does not use the fact that a is sorted.

I Binary search: a faster algorithm which uses the fact that a
is sorted to eliminate half of the elements at each step

I Will do a recursive version of binary-search
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DESIGN - BINARY SEARCH

BINARY SEARCH

I Search a between indices left and right ,
0 ≤ left ≤ right < n

I Split in the middle mid = left+right
2

I if v < a[mid ]
limit search between left and mid − 1.

I if v > a[mid ]
limit search between mid + 1 and rigth.

I if v == a[mid ]
return mid (element is found)

I Repeat until either element is found or you reach an empty
range.

I If the range is empty (i.e., left > right), return −1 (the
element does not exist in the array)
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DESIGN - BINARY SEARCH

ITERATIVE IMPLEMENTATION FROM LAB ASSIGNMENT

int binarySearch ( int a[], int n, int v) {
// a is sorted and of size n,
// initialize the search range [left ... right] to be [0 ... n-1]
int left = 0, right = n-1;
// loop terminates when search range becomes empty: left > right
// and continues executing when range is still valid: left <= right
while (left <= right ) {
// split in the middle.
int mid = (left + right)/2;
if (a[mid] < v) // check to eliminate left half of range
left = mid + 1;// range becomes [mid+1 ... right]

else if (a [mid] > v) // check to eliminate right half of range
right = mid - 1;// range becomes [left ... mid-1]

else // i.e., if (a[mid] == v), then element found
return mid;

}
// if we reach this point, then the range is empty
return -1;// element not found

}
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DESIGN - BINARY SEARCH

RECURSIVE BINARY SEARCH

General case:
I Split in the middle mid = left+right

2
I v < a[mid ]

I Recursively search between left
and mid − 1.

I v > a[mid ]
I Recursively search between

mid + 1 and right .

Base cases:
I range is empty

I v does not exist
I return −1
I happens when left > right

I a[mid ] = v
I found: return mid
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DESIGN - BINARY SEARCH

RECURSIVE BINARY SEARCH PROTOTYPE

I We have a, n, and v
I For recursion we need left and right
I The first time left = 0 and right = n − 1,

I so, n is redundant and can be eliminated from the argument
list

I Declaration:
int recBinarySearch(int a[], int left, int right, int v);

I Initial call:
I recBinarySearch(a, 0, n-1, v);
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DESIGN - BINARY SEARCH

RECURSIVE BINARY SEARCH IMPLEMENTATION

1 int recBinarySearch ( int a[], int left, int right, int v) {
2 // a is sorted and 0 <= left, right <= n-1
3 if (left > right) // if range empty/invalid
4 return -1;// element not found
5 // split in the middle.
6 int mid = (left + right)/2;
7

8

9 if (a[mid] < v) { // recursively search a[mid+1 ... right]
10 // pay attention why we return directly here
11 return recBinarySearch(a,mid+1,right,v);
12 }
13 else if (a [mid] > v) { // recursively search a[left ... mid-1]
14 // pay attention why we return directly here
15 return recBinarySearch(a,left,mid-1,v);
16 }
17 else // i.e., if(a[mid] == v) , element is found
18 return mid;
19

20 }
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DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid ] = 10

` = 0, r = 2
a[mid ] = 4

` = 0, r = 0,
a[mid ] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid ] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid ] = 18

` = 4, r = 4
a[mid ] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid ] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15
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DESIGN - BINARY SEARCH

FYI: ARRAY PARAMETERS IN RECURSIVE FUNCTIONS

I C++: Typically Arrays are passed by reference and are
NOT copied to recursive calls.

I All the copies of the function work on the same copy of the
array.

I Matlab: The interpreter tries to do the “smart” thing
I For instance, if the array is not changed in the function then

it is not copied.
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DESIGN - BINARY SEARCH

WHY RECURSION?
I Some of the examples so far are better done iteratively.
I We used them for illustration purposes.
I It is often more elegant to define a recursive solution.

I Typical divide and conquer algorithms.
I More interesting examples will follow
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OUTLINE

DEFINITIONS
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TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOI EXAMPLE



Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

36 of 56

HANOI -

THE TOWER OF HANOI PROBLEM

I Given 3 needles and n disks of increasing sizes.
I The n disks are originally stacked on needle 1 in increasing

size order with largest at the bottom.
I Target is to move the disks to needle 3.
I Constraint:

I Move one disk at a time.
I The removed disk must be directly placed on one of the

needles.
I A larger disk can not be placed on top of a smaller disk.
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HANOI -

THE TOWER OF HANOI ANIMATION

Use the tower-of-Hanoi slides by Hofman and Damman
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HANOI -

TOWER OF HANOI ALGORITHM IDEA

I In general to move n disks from needle 1 to needle 3
1 if n ≥ 2 move top n − 1 disks recursively from needle 1 to

needle 2, using needle 3 as an intermediate needle.
2 Move disk from needle 1 to needle 3
3 If n ≥ 2, move top n − 1 disks recursively from needle 2 to

needle 3, using needle 1 (which is now empty) as an
intermediate needle.

I Base case:

I Do second step only.
I Two-way recursion: the function calls itself twice
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RECURSIVE IMPLEMENTATION OF TOWER OF HANOI

The following algorithm prints instructions to move n disks from
needle 1 to needle 3 when called with moveDisks(n,1,3,2);
void moveDisks(int n, int from, int to, int intermediate)
{

if(n>=2) modeDisks(n-1, from,intermediate,to);
// first recursive call

cout << "Move disk " << n << " from " << from <<" to " << to << "." << endl;
// If n ==1, only the count will be executed, hence this is the base case

if(n>=2) modeDisks(n-1, intermediate,to,from);
// second recursive call

}
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RECURSIVE VS. ITERATIVE SOLUTIONS

I There are usually two ways to solve a particular problem
I Iteration (looping)
I Recursion

I Which method is betteriteration or recursion?
I In addition to the nature of the problem, the other key

factor in determining the best solution method is efficiency.
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RECURSION MEMORY COSTS

I Every recursive call has its own set of parameters and
local variables

I Whenever a function is called
I Memory space for its formal parameters and local variables

is allocated
I When the function terminates

I That memory space is then deallocated
I Overhead associated with recursive functions:

I Memory space
I Computer time
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EFFICIENCY: ITERATIVE VS. RECURSIVE

I The choice between the two alternatives depends on the
nature of the problem.

I For problems such as mission control systems
I Efficiency is absolutely critical and dictates the solution

method.
I An iterative solution is often more obvious and easier to

understand than a recursive solution.
I If the definition of a problem is inherently recursive,

sometimes it is a good idea to consider a recursive
solution.

I If the idea of the algorithm is inherently recursive, consider
a recursive solution, e.g.,

I Binary Search, Tower of Hanoi
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SUMMARY

I Recursion is the process of solving a problem by reducing
it to smaller versions of itself.

I A recursive definition or algorithm has one or more base
cases.

I Recursive algorithms are implemented using recursive
functions

I A function is called recursive if it calls itself.
I The solution to a base case is typically obtained directly.

I The base case stops the recursion
I The solution of a general case breaks the problem into

smaller versions of itself.
I A general case must eventually be reduced to a base case.
I Directly recursive: a function calls itself

I Indirectly recursive: A function calls another function that
eventually calls the original.
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EECE 231: RECURSION
READING: BIELAJEW, SECTION 9.3

ADDITIONAL REFERENCES: MAILK, CHAPTER 16
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