EECE 231: Root Finding Algorithms

Department of Electrical and Computer Engineering

(% AUB

American University of Beirut

R PR Yo e et}

(EECE 231 — Fall 2015) Root Finding Algorithms 1/26



The Root Finding Problem

@ Given a function f(x), find ¢ such that f(c¢) = 0.

@ We will consider three algorithms for solving the root finding problem:

— Bisection method
— Newton method
— Secant method

(EECE 231 — Fall 2015) Root Finding Algorithms 2/26



The Bisection Method

@ One of the first numerical methods developed to find the root of a
nonlinear equation f(x) = 0.

Theorem

A real, continuous function f(x) has at least one root ¢ € [x1, x.,] where
f(c) =0 iff(xy)f(xw) < O.

S

(EECE 231 — Fall 2015) Root Finding Algorithms

3/26



The Bisection Method (2)

@ If f(xy)f(xw) > 0 aroot may or may not exist between x; and x,,.

1(x)

N
Y

f(x) fx)

[ L/
(VAR ARV

(EECE 231 — Fall 2015) Root Finding Algorithms 4/26



The Bisection Method (3)

o If f(xy)f(xw) < 0 there also may be more than one root between
X1 and xy,.

Sx)

(EECE 231 — Fall 2015) Root Finding Algorithms 5/26



The Bisection Method (4)

@ The bisection method is similar to binary search. Because the root is
in the interval [xi, x..], we can try to guess its value.

@ Let’s consider the midpoint of the interval [xq, Xu], Xy = 5%,
@ This splits [x1, x..] into two halves: [x1, xm] and [xm, X.].

— If f(xy)f(xm) < 0, the root is in [xy, Xm].

— Otherwise, the root is in [xm, X

@ We can now look for the root in the appropriate interval and continue

to narrow intervals until we find the root, or reach a value that is very
close to it.

(EECE 231 — Fall 2015) Root Finding Algorithms 6/26



Bisection Method Algorithm

1. Choose an interval [x{, x.] such that f(x)f(x.) < 0.
2. Estimate the root, x,,,, as the mid-point between x; and x,:

™2

3. Now check the following:
a) If f(xy)f(xm) < 0 the root lies between x; and x.,,. Set x; = x; and

Xu = Xm-
b) If f(x1)f(xm) > 0 the root lies between x,, and x,,. Set x; = x,,, and
Xu = Xu-

c) If f(xy)f(xm) = 0 the root is x,,,. Return x,.

(EECE 231 — Fall 2015) Root Finding Algorithms 7126



Bisection Method Algorithm (2)

4. Find the new root estimate, x}*:

new __ Xl + Xy

m 2
5. Find the absolute relative approximate error:

new old
Xm —Xm

new
Xm

leql = x 100

where x:¢" and x21¢ are the root estimates from the current (new)

and previous iterations, respectively.

6. Compare |e| to the pre-specified relative error tolerance €.
If leq| > €5, go to Step 3. Otherwise stop, and return xJ:°".

(EECE 231 — Fall 2015) Root Finding Algorithms 8/26



Another Implementation of the Bisection Method

Algorithm

Input: a function, two endpoints, a z-tolerance, and a y-tolerance
Output: a ¢ such that |f(c)| is smaller than the y-tolerance.
RUN_BISECTION( f, a, b, d, €)
(1) Let fa < sign(f(a)).
Let fb < sign (f(b)).
if fafb>0
throw an error.
else if fafb=0
if fa=0
return a
else
return b
Let ¢ < “T*b
while b —a > 20
Let fe < f(c).
if |fe| <e
return c
if sign (fa)sign(fc) <0
Let b ¢, fb+ fc, ¢+ <.
else
Let a < ¢, fa<—fc,c<—%.
return c

S22 2E=2=2l=2

(EECE 231 — Fall 2015) Root Finding Algorithms

9/26



Advantages of the Bisection Method

@ The bisection method will always converge to a solution.

@ Because the interval is constantly being halved, a bound on the error
can be guaranteed.

(EECE 231 — Fall 2015) Root Finding Algorithms 10/26



Disadvantages of the Bisection Method

@ The convergence rate of the bisection method is slow.

@ If one of the initial guesses is close to the root, it will take longer to
reach the root.

@ If a function f(x) touches the x-axis (e.g. f(x) = x = 0) the bisection
method will not be able to find lower and upper guesses x; and x,,
such that f(x1)f(x.) < O.

@ For functions f(x) where there is a singularity and it reverses signs at
the singularity (e.g. f(x) = % the bisection method may converge on
the singularity.

(EECE 231 — Fall 2015) Root Finding Algorithms 11/26



The Newton-Raphson Method

@ The bisection method belongs to a class of solutions that use
bracketing (i.e. using two guesses, an upper and a lower bound) to
find the solution.

— These methods always converge because they zero in on a solution by
repeatedly reducing the interval to which the solution belongs.

@ By contrast, the Newton-Raphson method is an open method that
uses a single initial guess to search for the solution.

— A solution is not guaranteed to be found, but if it exists it can be
computed much faster than bracketing methods.

(EECE 231 — Fall 2015) Root Finding Algorithms 12/26



Geometric Derivation

@ Starting with an

initial guess of the root, x;, extending the tangent to

the curve at f(x;) to the point x;, 1 that intersects the x-axis provides
a better estimate of the root.

VACY)

S

S xi)

(EECE 231 — Fall 2015)

"""""""""""" [xi f(x)]

Root Finding Algorithms 13/26



Geometric Derivation (2)

@ The slope of a function at x = x; is:

_ Ay f(x) =0

f'(x;) = tan(0) =
AX Xi— Xigq
@ This produces the Newton-Raphson formula:

f(xq)
/(xi)

Xit+1 = X{ —

@ Applying the Newton-Raphon formula iteratively enables finding the
root of a non-linear function f(x) = 0 to a given tolerance because,
depending on the computer’s numerical precision (bits used to
represent numbers), it may not be possible to find an exact root.

(EECE 231 — Fall 2015) Root Finding Algorithms 14 /26



Taylor Series Derivation

@ Points on a differentiable function f(x) can be estimated using a
Taylor series expansion:

7 (x1)

T.(Xi+1 - Xi)2 +

fxipt) = fxi) + ' (xi).(xip1 —xi) +
@ We can estimate the function using the first two terms of the series:
f(xip1) = f(xi) +/(x0). (xi 1 —xi)
@ Because we are seeking f(x) = 0 we can assume that:
f(xip1) = 0= fxi) + f'(xi).(xip1 —x1)
@ This gives us the Newton-Raphson formula:

f(xq)
/(xi)

Xit1 = X{ —

(EECE 231 — Fall 2015) Root Finding Algorithms 15/26



Newton-Raphson Algorithm

1. Evaluate f’(x) symbolically.

2. Use an initial estimate of x; and use it to estimate the new value of

the root:
f(xi)

(%)
3. Find the absolute relative approximate error |eq|:

Xi+1 = Xq

Xi+1 — X4

leal = x 100

Xi4+1
4. Compare the absolute relative approximate error with a pre-specified

relative error tolerance €.

— If|eq] > €5 go to Step 2.
— Or, if the number of iterations is less than a maximum limit go to Step 2.
— Otherwise end algorithm.

(EECE 231 — Fall 2015) Root Finding Algorithms 16/26



Newton-Raphson Algorithm (2)

Input: a function, its derivative, an initial guess, an iteration limit, and a tolerance
Output: a point for which the function has small value.
RUN_NEWTON(f, f, 20, N, tol)
(1)  Let z + 20,n < 0.
) while n < N
3) Let fz « f(z).
(4) if |fz| < tol
(5) return z.
(6) Let fpx + f'(z).
(7) if | fpz| < tol
(8) Warn “f’(z) is small; giving up.”
9) return z.
(10 Let @ « = — fz/fpz.
(11 Let n <= n+1.

_ =

(EECE 231 — Fall 2015) Root Finding Algorithms 17/26



Problems with the Newton-Raphson Method

@ The Newton-Raphson method suffers from a number of problems:
Divergence at inflection points

Division by zero

Oscillations near local maxima/minima

Root jumping

(EECE 231 — Fall 2015) Root Finding Algorithms 18/26



Divergence at inflection points

@ An inflection point in a function f(x) is a point where the concavity of
the function changes (e.g. downwards to upwards, or vice versa). In
other words, it is the point where f”/(x) = 0.

f(x) = (x —1)%+0.512

1000

500

-500

-1000 -

1500 L L L L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10

@ In this function the inflection point occurs when x = 1.

(EECE 231 — Fall 2015) Root Finding Algorithms 19/26



Divergence at inflection points (2)

@ As the estimated root gets closer to the inflection point (x = 1), the
Newton-Raphson algorithm may produce diverging results. However,
it may recover and produce the correct result.

Iteration X f(x) (x) x-f(x)/f'(x)
0 5.000000 64.512000| 48.000000( 3.656000
1 3.656000 19.248316 21.163008| 2.746474
2 2.746474 5.839041 9.150509( 2.108363
3 2.108363 1.873587 3.685402( 1.599982
4 1.599982 0.727980 1.079935| 0.925885
5 0.925885 0.511593 0.016479| -30.119181
6 -30.119181| -30135.410443| 2905.210339| -19.746297
7 -19.746297| -8928.877763|1291.226532|-12.831261
8 -12.831261| -2645.460677| 573.911365| -8.221733
9 -8.221733 -783.707482| 255.121077| -5.149829
10 -5.149829 -232.076958| 113.461185| -3.104398
11 -3.104398 -68.631053 50.538260| -1.746397
12 -1.746397 -20.203230( 22.628083| -0.853558
13 -0.853558 -5.856225( 10.307030| -0.285380
14 -0.285380 -1.611707 4.956606| 0.039783
15 0.039783 -0.373335 2.766047( 0.174754
16 0.174754 -0.050018 2.043093( 0.199236
17 0.199236 -0.001469 1.923671| 0.199999
18 0.199999 -0.000001 1.920004| 0.200000
19 0.200000 0.000000 1.920000| 0.200000

(EECE 231 — Fall 2015) Root Finding Algorithms 20/26



f(x) =x®—0.03x° +2.4 x 1078

4

2F o A
/ /
/ /
/ N /
0 / AN e
/ AN //
~ e
2l
ab
Ny
. . . L L . . .
0015 001 0005 0 0005 001 0015 002 0025 003

@ For this function f’(x) = 3x2 — 0.06x = 0 at x = 0 and x = 0.02.

@ Estimating roots at or near these points can result in division by zero
or very large estimates where Newton-Raphson does not converge.

(EECE 231 — Fall 2015) Root Finding Algorithms 21/26



Oscillations near local maxima/minima

@ The Newton-Raphson method may produce results that converge
upon and oscillate around local maxima/minima, and that may
diverge away from the root.

@ The function f(x) = x2 4 2 does not have (real) roots. Applying the
Newtop Raphson method results in oscillations around the (global)
minimum at x = 0.

K(x) Iteration X f(x) f'(x)  [x-f(x)/f'(x),
0 -1.0000 3.0000 -2.0000 0.5000
1 0.5000 2.2500 1.0000 -1.7500
2 -1.7500 5.0625 -3.5000 | -0.3036
3 -0.3036 2.0922 -0.6071 3.1423
4 3.1423 11.8742 6.2847 1.2529
" 5 1.2529 3.5698 2.5059 -0.1717
2 6 -0.1717 2.0295 -0.3433 5.7395
: 7 5.7395 34.9422 | 11.4791 2.6955
@ x 8 2.6955 9.2659 5.3911 0.9768
05 Y 2 3 31’42 9 0.9768 2.9541 1.9536 -0.5354
4 10 -0.5354 2.2866 -1.0708 1.6002

(EECE 231 — Fall 2015) Root Finding Algorithms 22/26



Root jumping

@ For functions with multiple roots the Newton-Raphson method may
return a root that is farther away from an initial estimate than
a closer root.

@ For example, if we use an initial root estimate of 2.47t (7.5398) for the
function f(x) = sin(x), the Newton-Raphson algorithm will return the
root at x = 0 instead of the closer root at x = 27t (6.2832).

g © N

X Iteration X f(x) f(x)  |x-f(x)/f(x)
: e 0 7.539822369 | 0.951057 | 0.309017 | 4.462139
7530822 \ 4.462138831 | -0.96885 | -0.24765 | 0.549904

0.549904286 | 0.522606 | 0.852575 | -0.06307

-0.063069242 | -0.06303 | 0.998012 | 8.38E-05
8.37574E-05 | 8.38E-05 1 2E-13

-1.95861E-13 | -2€-13 1 0

UR WN R

(EECE 231 — Fall 2015) Root Finding Algorithms 23/26



Secant Method

@ One of the disadvantages of the Newton-Raphson method is that it
requires knowledge of the derivative function f’(x). Although
symbolic manipulation programs like MATLAB make this possible,
there may be times when calculating the derivative function is not
possible or practical.

@ The derivative function can be approximated by the slope of the
secant line passing through the points (x;_1, f(x{_1)) and (x4, f(x{)):

f(xi) —f(xi1)
X{ — Xi—1

f'(xi) =

(EECE 231 — Fall 2015) Root Finding Algorithms 24 /26



Secant Method (2)

@ Substituting the approximation of f’(x;) in the Newton-Raphson
equation:

fxi) (xi —xi1)

f(xi) — f(xi—1)

Xit1 = X{ —

@ In other words, the Secant Method estimates the root as the
x-intercept of the secant line connecting two points on the function
graph.

S @)

S )

S

(EECE 231 — Fall 2015) Root Finding Algorithms 25/26



Performance of the Secant Method

@ Like the bisection method, the secant method needs two initial points
to estimate the root of a function. But unlike the bisection method, the
two values are not used to bracket the root.

@ The secant method is an open method that is not guaranteed to
converge on a root.

@ When it does converge, the secant method is faster than the bisection
method, but slower than the Newton-Raphson method.

(EECE 231 — Fall 2015) Root Finding Algorithms 26/26



