
EECE 231: Root Finding Algorithms

Department of Electrical and Computer Engineering

 2. AUB Logo. 6

Full Version

Concise Version

AUB Logo

AUB Logo
The AUB logo, as seen on the left, constitutes
the main element of the University’s visual
identity system.

There are two versions of the logo. The full
version of the logo includes the name of the
University spelled out in both English and Arabic
at the bottom. The concise version consists of
the seal, the tree and the acronym only.

The full version of the AUB logo must be used
for official University stationery as well as
on both the internal and external websites.
Examples of stationery are included in the
Stationery section of this manual.

The concise version of the logo may appear on
mediums such as brochures, leaflets, banners,
posters, and on merchandise items including
shirts, uniforms, and promotional items. It is
also available for digital use such as digital
presentations.

The logo, either the full or the concise
version, must be used on all official AUB
communications in accordance with some basic
guidelines explained on the following pages.

(EECE 231 – Fall 2015) Root Finding Algorithms 1 / 26

The Root Finding Problem

Given a function f(x), find c such that f(c) = 0.

We will consider three algorithms for solving the root finding problem:
– Bisection method
– Newton method
– Secant method

(EECE 231 – Fall 2015) Root Finding Algorithms 2 / 26

The Bisection Method

One of the first numerical methods developed to find the root of a
nonlinear equation f(x) = 0.

Theorem
A real, continuous function f(x) has at least one root c ∈ [xl, xu] where
f(c) = 0 if f(xl)f(xu) < 0.

03.03.2 Chapter 03.03

Figure 1 At least one root exists between the two points if the function is real, continuous,
and changes sign.

Figure 2 If the function)(xf does not change sign between the two points, roots of the
equation 0)(=xf may still exist between the two points.

f (x)

xℓ xu

x

f (x)

xℓ
xu

x

(EECE 231 – Fall 2015) Root Finding Algorithms 3 / 26

The Bisection Method (2)

If f(xl)f(xu) > 0 a root may or may not exist between xl and xu.

03.03.2 Chapter 03.03

Figure 1 At least one root exists between the two points if the function is real, continuous,
and changes sign.

Figure 2 If the function)(xf does not change sign between the two points, roots of the
equation 0)(=xf may still exist between the two points.

f (x)

xℓ xu

x

f (x)

xℓ
xu

x

Bisection Method 03.03.3

Figure 3 If the function)(xf does not change sign between two points, there may not be
any roots for the equation 0)(=xf between the two points.

Figure 4 If the function)(xf changes sign between the two points, more than one root for
the equation 0)(=xf may exist between the two points.

Is the root now between



x and mx or between mx and ux ? Well, one can find the sign of
)()(mxfxf



, and if 0)()(<mxfxf


 then the new bracket is between


x and mx , otherwise,
it is between mx and ux . So, you can see that you are literally halving the interval. As one
repeats this process, the width of the interval []uxx ,



 becomes smaller and smaller, and you
can zero in to the root of the equation 0)(=xf . The algorithm for the bisection method is
given as follows.

f (x)

xℓ
xu x

f (x)

xℓ xu
x

f (x)

xℓ xu
x

(EECE 231 – Fall 2015) Root Finding Algorithms 4 / 26

The Bisection Method (3)

If f(xl)f(xu) < 0 there also may be more than one root between
xl and xu.

Bisection Method 03.03.3

Figure 3 If the function)(xf does not change sign between two points, there may not be
any roots for the equation 0)(=xf between the two points.

Figure 4 If the function)(xf changes sign between the two points, more than one root for
the equation 0)(=xf may exist between the two points.

Is the root now between



x and mx or between mx and ux ? Well, one can find the sign of
)()(mxfxf



, and if 0)()(<mxfxf


 then the new bracket is between


x and mx , otherwise,
it is between mx and ux . So, you can see that you are literally halving the interval. As one
repeats this process, the width of the interval []uxx ,



 becomes smaller and smaller, and you
can zero in to the root of the equation 0)(=xf . The algorithm for the bisection method is
given as follows.

f (x)

xℓ
xu x

f (x)

xℓ xu
x

f (x)

xℓ xu
x

(EECE 231 – Fall 2015) Root Finding Algorithms 5 / 26

The Bisection Method (4)

The bisection method is similar to binary search. Because the root is
in the interval [xl, xu], we can try to guess its value.

Let’s consider the midpoint of the interval [xl, xu], xm = xl+xu

2 .

This splits [xl, xu] into two halves: [xl, xm] and [xm, xu].
– If f(xl)f(xm) < 0, the root is in [xl, xm].
– Otherwise, the root is in [xm, xu]

We can now look for the root in the appropriate interval and continue
to narrow intervals until we find the root, or reach a value that is very
close to it.

(EECE 231 – Fall 2015) Root Finding Algorithms 6 / 26

Bisection Method Algorithm

1. Choose an interval [xl, xu] such that f(xl)f(xu) < 0.

2. Estimate the root, xm, as the mid-point between xl and xu:

xm =
xl + xu

2

3. Now check the following:
a) If f(xl)f(xm) < 0 the root lies between xl and xm. Set xl = xl and
xu = xm.

b) If f(xl)f(xm) > 0 the root lies between xm and xu. Set xl = xm and
xu = xu.

c) If f(xl)f(xm) = 0 the root is xm. Return xm.

(EECE 231 – Fall 2015) Root Finding Algorithms 7 / 26

Bisection Method Algorithm (2)

4. Find the new root estimate, xnew
m :

xnew
m =

xl + xu
2

5. Find the absolute relative approximate error:

|εa| =

∣∣∣∣xnew
m − xoldm

xnew
m

∣∣∣∣× 100

where xnew
m and xoldm are the root estimates from the current (new)

and previous iterations, respectively.

6. Compare |εa| to the pre-specified relative error tolerance εs.
If |εa| > εs, go to Step 3. Otherwise stop, and return xnew

m .

(EECE 231 – Fall 2015) Root Finding Algorithms 8 / 26

Another Implementation of the Bisection Method
Algorithm6.2. NEWTON’S METHOD 55

Algorithm 1: Algorithm for finding root by bisection.

Input: a function, two endpoints, a x-tolerance, and a y-tolerance
Output: a c such that |f(c)| is smaller than the y-tolerance.
run bisection(f, a, b, δ, ǫ)
(1) Let fa← sign (f(a)) .
(2) Let fb← sign (f(b)) .
(3) if fafb > 0
(4) throw an error.
(5) else if fafb = 0
(6) if fa = 0
(7) return a
(8) else
(9) return b
(10) Let c← a+b

2
(11) while b− a > 2δ
(12) Let fc← f(c).
(13) if |fc| < ǫ
(14) return c
(15) if sign (fa) sign (fc) < 0
(16) Let b← c, fb← fc, c← a+c

2 .
(17) else
(18) Let a← c, fa← fc, c← c+b

2 .
(19) return c

This approximation is better when f ′′(·) is “well-behaved” between x and x+h. Newton’s method
attempts to find some h such that

0 = f(x+ h) = f(x) + f ′(x)h.

This is easily solved as

h =
−f(x)
f ′(x)

.

An iteration of Newton’s method, then, takes some guess xk and returns xk+1 defined by

xk+1 = xk −
f(xk)

f ′(xk)
. (6.1)

An iteration of Newton’s method is shown in Figure 6.1, along with the linearization of f(x) at
xk.

6.2.1 Implementation

Use of Newton’s method requires that the function f(x) be differentiable. Moreover, the derivative
of the function must be known. This may preclude Newton’s method from being used when f(x)
is a black box. As is the case for the bisection method, our algorithm cannot explicitly check for
continuity of f(x). Moreover, the success of Newton’s method is dependent on the initial guess
x0. This was also the case with bisection, but for bisection there was an easy test of the initial
interval–i.e., test if f(a0)f(b0) < 0.

(EECE 231 – Fall 2015) Root Finding Algorithms 9 / 26

Advantages of the Bisection Method

The bisection method will always converge to a solution.

Because the interval is constantly being halved, a bound on the error
can be guaranteed.

(EECE 231 – Fall 2015) Root Finding Algorithms 10 / 26

Disadvantages of the Bisection Method

The convergence rate of the bisection method is slow.

If one of the initial guesses is close to the root, it will take longer to
reach the root.

If a function f(x) touches the x-axis (e.g. f(x) = x2 = 0) the bisection
method will not be able to find lower and upper guesses xl and xu
such that f(xl)f(xu) < 0.

For functions f(x) where there is a singularity and it reverses signs at
the singularity (e.g. f(x) = 1

x , the bisection method may converge on
the singularity.

(EECE 231 – Fall 2015) Root Finding Algorithms 11 / 26

The Newton-Raphson Method

The bisection method belongs to a class of solutions that use
bracketing (i.e. using two guesses, an upper and a lower bound) to
find the solution.

– These methods always converge because they zero in on a solution by
repeatedly reducing the interval to which the solution belongs.

By contrast, the Newton-Raphson method is an open method that
uses a single initial guess to search for the solution.

– A solution is not guaranteed to be found, but if it exists it can be
computed much faster than bracketing methods.

(EECE 231 – Fall 2015) Root Finding Algorithms 12 / 26

Geometric Derivation

Starting with an initial guess of the root, xi, extending the tangent to
the curve at f(xi) to the point xi+1 that intersects the x-axis provides
a better estimate of the root.

03.04.2 Chapter 03.04

Equation (1) is called the Newton-Raphson formula for solving nonlinear equations of the
form   0xf . So starting with an initial guess, ix , one can find the next guess, 1ix , by

using Equation (1). One can repeat this process until one finds the root within a desirable
tolerance.

Algorithm

The steps of the Newton-Raphson method to find the root of an equation   0xf are

1. Evaluate  xf  symbolically

2. Use an initial guess of the root, ix , to estimate the new value of the root, 1ix , as

 
 i

i
ii xf

xf
 = xx


1

3. Find the absolute relative approximate error a as

 010
1

1 







i

ii
a x

 xx
 =

4. Compare the absolute relative approximate error with the pre-specified relative
error tolerance, s . If a > s , then go to Step 2, else stop the algorithm. Also,

check if the number of iterations has exceeded the maximum number of iterations
allowed. If so, one needs to terminate the algorithm and notify the user.

 Figure 1 Geometrical illustration of the Newton-Raphson method.

f (x)

f (xi)

f (xi+1)

 xi+2 xi+1 xi
 x

 θ

[xi, f (xi)]

(EECE 231 – Fall 2015) Root Finding Algorithms 13 / 26

Geometric Derivation (2)

The slope of a function at x = xi is:

f ′(xi) = tan(θ) =
∆y

∆x
=
f(xi) − 0
xi − xi+1

This produces the Newton-Raphson formula:

xi+1 = xi −
f(xi)

f ′(xi)

Applying the Newton-Raphon formula iteratively enables finding the
root of a non-linear function f(x) = 0 to a given tolerance because,
depending on the computer’s numerical precision (bits used to
represent numbers), it may not be possible to find an exact root.

(EECE 231 – Fall 2015) Root Finding Algorithms 14 / 26

Taylor Series Derivation

Points on a differentiable function f(x) can be estimated using a
Taylor series expansion:

f(xi+1) = f(xi) + f
′(xi).(xi+1 − xi) +

f ′′(xi)

2!
.(xi+1 − xi)

2 + ...

We can estimate the function using the first two terms of the series:

f(xi+1) ≈ f(xi) + f ′(xi).(xi+1 − xi)

Because we are seeking f(x) = 0 we can assume that:

f(xi+1) = 0 ≈ f(xi) + f ′(xi).(xi+1 − xi)

This gives us the Newton-Raphson formula:

xi+1 = xi −
f(xi)

f ′(xi)

(EECE 231 – Fall 2015) Root Finding Algorithms 15 / 26

Newton-Raphson Algorithm

1. Evaluate f ′(x) symbolically.

2. Use an initial estimate of xi and use it to estimate the new value of
the root:

xi+1 = xi −
f(xi)

f ′(xi)

3. Find the absolute relative approximate error |εa|:

|εa| =

∣∣∣∣xi+1 − xi
xi+1

∣∣∣∣× 100

4. Compare the absolute relative approximate error with a pre-specified
relative error tolerance εs.

– If |εa| > εs go to Step 2.
– Or, if the number of iterations is less than a maximum limit go to Step 2.
– Otherwise end algorithm.

(EECE 231 – Fall 2015) Root Finding Algorithms 16 / 26

Newton-Raphson Algorithm (2)

56 CHAPTER 6. FINDING ROOTS

xk

xk−1

f(xk)

f(xk−1)

Figure 6.1: One iteration of Newton’s method is shown for a quadratic function f(x). The lin-
earization of f(x) at xk is shown. It is clear that xk+1 is a root of the linearization. It happens to
be the case that |f(xk+1)| is smaller than |f(xk)| , i.e., xk+1 is a better guess than xk.

Our algorithm will test for goodness of the estimate by looking at |f(xk)| . The algorithm will
also test for near-zero derivative. Note that if it were the case that f ′(xk) = 0 then h would be ill
defined.

Algorithm 2: Algorithm for finding root by Newton’s Method.

Input: a function, its derivative, an initial guess, an iteration limit, and a tolerance
Output: a point for which the function has small value.
run newton(f, f ′, x0, N, tol)
(1) Let x← x0, n← 0.
(2) while n ≤ N
(3) Let fx← f(x).
(4) if |fx| < tol
(5) return x.
(6) Let fpx← f ′(x).
(7) if |fpx| < tol
(8) Warn “f ′(x) is small; giving up.”
(9) return x.
(10) Let x← x− fx/fpx.
(11) Let n← n+ 1.

(EECE 231 – Fall 2015) Root Finding Algorithms 17 / 26

Problems with the Newton-Raphson Method

The Newton-Raphson method suffers from a number of problems:
– Divergence at inflection points
– Division by zero
– Oscillations near local maxima/minima
– Root jumping

(EECE 231 – Fall 2015) Root Finding Algorithms 18 / 26

Divergence at inflection points

An inflection point in a function f(x) is a point where the concavity of
the function changes (e.g. downwards to upwards, or vice versa). In
other words, it is the point where f ′′(x) = 0.

f(x) = (x− 1)3 + 0.512

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1500

-1000

-500

0

500

1000

In this function the inflection point occurs when x = 1.

(EECE 231 – Fall 2015) Root Finding Algorithms 19 / 26

Divergence at inflection points (2)

As the estimated root gets closer to the inflection point (x = 1), the
Newton-Raphson algorithm may produce diverging results. However,
it may recover and produce the correct result.

Iteration x f(x) f'(x) x‐f(x)/f'(x)

0 5.000000 64.512000 48.000000 3.656000

1 3.656000 19.248316 21.163008 2.746474

2 2.746474 5.839041 9.150509 2.108363

3 2.108363 1.873587 3.685402 1.599982

4 1.599982 0.727980 1.079935 0.925885

5 0.925885 0.511593 0.016479 ‐30.119181

6 ‐30.119181 ‐30135.410443 2905.210339 ‐19.746297

7 ‐19.746297 ‐8928.877763 1291.226532 ‐12.831261

8 ‐12.831261 ‐2645.460677 573.911365 ‐8.221733

9 ‐8.221733 ‐783.707482 255.121077 ‐5.149829

10 ‐5.149829 ‐232.076958 113.461185 ‐3.104398

11 ‐3.104398 ‐68.631053 50.538260 ‐1.746397

12 ‐1.746397 ‐20.203230 22.628083 ‐0.853558

13 ‐0.853558 ‐5.856225 10.307030 ‐0.285380

14 ‐0.285380 ‐1.611707 4.956606 0.039783

15 0.039783 ‐0.373335 2.766047 0.174754

16 0.174754 ‐0.050018 2.043093 0.199236

17 0.199236 ‐0.001469 1.923671 0.199999

18 0.199999 ‐0.000001 1.920004 0.200000

19 0.200000 0.000000 1.920000 0.200000

(EECE 231 – Fall 2015) Root Finding Algorithms 20 / 26

Division by zero

f(x) = x3 − 0.03x2 + 2.4× 10−6

For this function f ′(x) = 3x2 − 0.06x = 0 at x = 0 and x = 0.02.

Estimating roots at or near these points can result in division by zero
or very large estimates where Newton-Raphson does not converge.

(EECE 231 – Fall 2015) Root Finding Algorithms 21 / 26

Oscillations near local maxima/minima

The Newton-Raphson method may produce results that converge
upon and oscillate around local maxima/minima, and that may
diverge away from the root.

The function f(x) = x2 + 2 does not have (real) roots. Applying the
Newtop Raphson method results in oscillations around the (global)
minimum at x = 0.

Newton-Raphson Method 03.04.7

-1.00E-05

-7.50E-06

-5.00E-06

-2.50E-06

0.00E+00

2.50E-06

5.00E-06

7.50E-06

1.00E-05

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

x

f(x)

0.02

 Figure 4 Pitfall of division by zero or a near zero number.

3. Oscillations near local maximum and minimum
Results obtained from the Newton-Raphson method may oscillate about the local maximum
or minimum without converging on a root but converging on the local maximum or
minimum. Eventually, it may lead to division by a number close to zero and may diverge.
For example, for

  022  xxf
 the equation has no real roots (Figure 5 and Table 3).

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

f(x)

x

 3

 4

 2

 1

 -1.75 -0.3040 0.5 3.142

 Figure 5 Oscillations around local minima for   22  xxf .

Iteration x f(x) f'(x) x‐f(x)/f'(x)

0 ‐1.0000 3.0000 ‐2.0000 0.5000

1 0.5000 2.2500 1.0000 ‐1.7500

2 ‐1.7500 5.0625 ‐3.5000 ‐0.3036

3 ‐0.3036 2.0922 ‐0.6071 3.1423

4 3.1423 11.8742 6.2847 1.2529

5 1.2529 3.5698 2.5059 ‐0.1717

6 ‐0.1717 2.0295 ‐0.3433 5.7395

7 5.7395 34.9422 11.4791 2.6955

8 2.6955 9.2659 5.3911 0.9768

9 0.9768 2.9541 1.9536 ‐0.5354

10 ‐0.5354 2.2866 ‐1.0708 1.6002

(EECE 231 – Fall 2015) Root Finding Algorithms 22 / 26

Root jumping

For functions with multiple roots the Newton-Raphson method may
return a root that is farther away from an initial estimate than
a closer root.

For example, if we use an initial root estimate of 2.4π (7.5398) for the
function f(x) = sin(x), the Newton-Raphson algorithm will return the
root at x = 0 instead of the closer root at x = 2π (6.2832).Newton-Raphson Method 03.04.9

-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461 7.539822

Figure 6 Root jumping from intended location of root for   0sin  xxf .

Appendix A. What is an inflection point?

For a function  xf , the point where the concavity changes from up-to-down or

down-to-up is called its inflection point. For example, for the function    31 xxf , the
concavity changes at 1x (see Figure 3), and hence (1,0) is an inflection point.

An inflection points MAY exist at a point where 0)( xf and where)('' xf does
not exist. The reason we say that it MAY exist is because if 0)( xf , it only makes it a

possible inflection point. For example, for 16)(4  xxf , 0)0(f , but the concavity does

not change at 0x . Hence the point (0, –16) is not an inflection point of 16)(4  xxf .

For    31 xxf ,)(xf  changes sign at 1x (0)( xf for 1x , and 0)( xf
for 1x), and thus brings up the Inflection Point Theorem for a function)(xf that states the
following.

“If)(' cf exists and)(cf  changes sign at cx  , then the point))(,(cfc is an
inflection point of the graph of f .”

Appendix B. Derivation of Newton-Raphson method from Taylor series

Newton-Raphson method can also be derived from Taylor series. For a general function
 xf , the Taylor series is

      iiiii xxxfxfxf   11 +
    

2
1!2 ii

i xx
xf"

As an approximation, taking only the first two terms of the right hand side,
      iiiii xxxfxfxf   11

and we are seeking a point where   ,xf 0 that is, if we assume

  ,xf i 01 

Iteration x f(x) f'(x) x‐f(x)/f'(x)

0 7.539822369 0.951057 0.309017 4.462139

1 4.462138831 ‐0.96885 ‐0.24765 0.549904

2 0.549904286 0.522606 0.852575 ‐0.06307

3 ‐0.063069242 ‐0.06303 0.998012 8.38E‐05

4 8.37574E‐05 8.38E‐05 1 ‐2E‐13

5 ‐1.95861E‐13 ‐2E‐13 1 0

(EECE 231 – Fall 2015) Root Finding Algorithms 23 / 26

Secant Method

One of the disadvantages of the Newton-Raphson method is that it
requires knowledge of the derivative function f ′(x). Although
symbolic manipulation programs like MATLAB make this possible,
there may be times when calculating the derivative function is not
possible or practical.

The derivative function can be approximated by the slope of the
secant line passing through the points (xi−1, f(xi−1)) and (xi, f(xi)):

f ′(xi) =
f(xi) − f(xi−1)

xi − xi−1

(EECE 231 – Fall 2015) Root Finding Algorithms 24 / 26

Secant Method (2)

Substituting the approximation of f ′(xi) in the Newton-Raphson
equation:

xi+1 = xi −
f(xi)(xi − xi−1)

f(xi) − f(xi−1)

In other words, the Secant Method estimates the root as the
x-intercept of the secant line connecting two points on the function
graph.

03.05.2 Chapter 03.05

The secant method can also be derived from geometry, as shown in Figure 1. Taking two
initial guesses, 1ix and ix , one draws a straight line between)(ixf and)(1ixf passing

through the x -axis at 1ix . ABE and DCE are similar triangles.

Hence

DE

DC

AE

AB


11

1

1

)()(





 


 ii

i

ii

i

xx

xf

xx

xf

On rearranging, the secant method is given as

)()(

))((

1

1
1




 




ii

iii
ii xfxf

xxxf
xx

 Figure 1 Geometrical representation of the secant method.

Example 1

You are working for ‘DOWN THE TOILET COMPANY’ that makes floats (Figure 2) for
ABC commodes. The floating ball has a specific gravity of 0.6 and a radius of 5.5 cm. You
are asked to find the depth to which the ball is submerged when floating in water.
The equation that gives the depth x to which the ball is submerged under water is given by

010993.3165.0 423  xx
Use the secant method of finding roots of equations to find the depth x to which the ball is
submerged under water. Conduct three iterations to estimate the root of the above equation.
Find the absolute relative approximate error and the number of significant digits at least
correct at the end of each iteration.

f (x)

f (xi)

f (xi–1)

 xi+1 xi–1 xi
 x

B

 C

A D E

(EECE 231 – Fall 2015) Root Finding Algorithms 25 / 26

Performance of the Secant Method

Like the bisection method, the secant method needs two initial points
to estimate the root of a function. But unlike the bisection method, the
two values are not used to bracket the root.

The secant method is an open method that is not guaranteed to
converge on a root.

When it does converge, the secant method is faster than the bisection
method, but slower than the Newton-Raphson method.

(EECE 231 – Fall 2015) Root Finding Algorithms 26 / 26

