
Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231: RECURSION
READING: BIELAJEW, SECTION 9.3

ADDITIONAL REFERENCES: MAILK, CHAPTER 16

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

2 of 56

-

OBJECTIVES

I Learn recursive definitions
I Learn base and general cases in a recursive definition
I Appreciate recursive algorithms and the divide and

conquer concept
I Learn recursive functions
I Learn how recursive functions implement recursive

algorithms

3 of 56

DEFINITIONS -

OUTLINE

DEFINITIONS

RECURSIVE FUNCTIONS

TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOI EXAMPLE

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

4 of 56

DEFINITIONS -

RECURSIVE DEFINITIONS

I Recursion: solving a problem by reducing it to smaller
versions of itself

I factorial: recursive definition
I 0! = 1 if n = 1 (1): the base case
I n! = n × (n − 1)! if n > 0 (2) : the general case

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

5 of 56

DEFINITIONS -

RECURSIVE DEFINITIONS — 2
I A recursive definition defines a structure in terms of a

smaller version of itself.
I Every recursive definition must have at least one base

case.
I The general case must eventually reduce the definition into

the base case.
I The base case stops the recursion (reduction of the

problem).

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

6 of 56

DEFINITIONS -

RECURSIVE ALGORITHMS

I Recursive algorithms are solutions that reduce the problem
into smaller versions of itself.

I MUST have at least one base case.
I The problem MUST eventually reduce to one of the base

cases.
I A recursive function is an implementation of recursion

definitions and algorithms.
I It is a function that calls itself.

7 of 56

FUNCTIONS -

OUTLINE

DEFINITIONS

RECURSIVE FUNCTIONS

TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOI EXAMPLE

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

8 of 56

FUNCTIONS -

RECURSIVE FUNCTIONS

I Consider the execution of a recursive function as the
execution of several copies of the recursive function.

I Each call to a recursive function has its own:
I code,
I parameters (argument),
I local variables,
I return value, and
I control: knows where to return when done (who called it)

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

9 of 56

FUNCTIONS -

RECURSIVE FUNCTION CONTROL

I When one of the calls to the recursive function completes
control returns to the calling function

I could be another version of the function, or
I could be the original call of the recursive function

I Execution in the calling function resumes from the point
immediately following the call.

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

10 of 56

FUNCTIONS -

EXAMPLE FACTORIAL

I factorial(n)
I 1 if n = 0
I n ∗ (n − 1)! if n ≥ 1

int factorial(int n) {
// n is a non-negative integer
if (n == 0) {
return 1;

} else {
int factNMinusOne = fact(n-1);
return n*factNMinusOne;

}
}

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

11 of 56

FUNCTIONS -

ALTERNATIVE factorial IMPLEMENTATION

int factorial(int n) {
// n is a non-negative integer
if (n == 0) {
return 1;

}
return n*fact(n-1);

}

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

12 of 56

FUNCTIONS -

EXECUTION OF THE factorial IMPLEMENTATION

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

13 of 56

FUNCTIONS -

INDIRECT RECURSION

I Direct recursion: a function calls itself.
I Indirect recursion: a function f calls other functions that

eventually end up calling f .

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

14 of 56

FUNCTIONS -

INFINITE RECURSION

I Infinite recursion: every function call results in a recursive
function call.

I In theory it executes forever
I Because computer memory is finite:

I Computer executes until it runs out of memory to make
copies of function variables.

I Unexpected results in terms of termination status of the
program.

I Important: If not intended, it is usually the result of
I missing base case
I the smaller version of the problem does not reduce to the

base case

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

15 of 56

FUNCTIONS -

TRACKING RECURSION

I Consider function:
void f(int n) {
cout << n < " " ;
if (n >= 1) {
f(n-1);}

}

I Call function:
f(10);

I Result: 10 9 8 7 6 5 4 3 2 1 0

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

15 of 56

FUNCTIONS -

TRACKING RECURSION

I Consider function:
void f(int n) {
cout << n < " " ;
if (n >= 1) {
f(n-1);}

}

I Call function:
f(10);

I Result: 10 9 8 7 6 5 4 3 2 1 0

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

16 of 56

FUNCTIONS -

TRACKING RECURSION - 2
I Consider function:

void g(int n) {
if (n >= 1) {
g(n-1);}

cout << n < " " ;
}

I Call function:
g(10);

I Result: 0 1 2 3 4 5 6 7 8 9 10

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

16 of 56

FUNCTIONS -

TRACKING RECURSION - 2
I Consider function:

void g(int n) {
if (n >= 1) {
g(n-1);}

cout << n < " " ;
}

I Call function:
g(10);

I Result: 0 1 2 3 4 5 6 7 8 9 10

17 of 56

TWO-WAY RECURSION -

OUTLINE

DEFINITIONS

RECURSIVE FUNCTIONS

TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOI EXAMPLE

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

18 of 56

TWO-WAY RECURSION -

REDUCING A PROBLEM TO TWO SIMILAR PROBLEMS

SMALLER IN SIZE

I Fibonacci numbers:
I a1 = 1
I a2 = 1
I an = an−1 + an−2 if n ≥ 3

I Given n compute the Fibonacci number of n.

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

19 of 56

TWO-WAY RECURSION -

FIBONACCI NUMBERS THE ITERATIVE WAY

int FibNum(int n)
{

if(n==1 || n==2) { return 1;}
int previous1=1, previous2=1, current;
for(int i=3; i<=n; i=i+1) {

current = previous1+previous2;
previous2 = previous1;
previous1 = current;

}
return current;

}

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

20 of 56

TWO-WAY RECURSION -

RECURSIVE IMPLEMENTATION FOR FIBONACCI

NUMBERS

I Fibonacci numbers:
I a1 = 1
I a2 = 1
I an = an−1 + an−2 if

n ≥ 3
I Given n compute the

Fibonacci number of n.

int recFibNum(int n) {
// the two base cases
if(n==1 || n==2) { return 1;}
else {

// first recursive call
int prev1 = FibNum (n-1);

// second recursive call
int prev2 = FibNum(n-2);
// merge the result
return prev1 + prev2;

}
}

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

21 of 56

TWO-WAY RECURSION -

ALTERNATIVE RECURSIVE FIBONACCI NUMBERS

I Fibonacci numbers:
I a1 = 1
I a2 = 1
I an = an−1 + an−2 if

n ≥ 3
I Given n compute the

Fibonacci number of n.

int recFibNum(int n) {
// the two base cases
if(n==1 || n==2) { return 1;}

// Note that the else keyword
// can be omitted
return FibNum (n-1) + FibNum(n-2);

}

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

22 of 56

TWO-WAY RECURSION -

TRACK THE RECURSION OF recFibNum
I Try recFibNum(5) and draw its recursion execution tree.
I Compare to FibNum(5).
I Which one is faster?

I recFibNum is not efficient at all compared to fibNum.
I Why?

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

23 of 56

TWO-WAY RECURSION -

recFibNum VS. FibNum
I The recFibNum repeats solving same smaller size

problems several times.
I recFibNum(5) calls recFibNum(4) and recFibNum(3)

I recFibNum(4) calls recFibNum(3) and recFibNum(2).
I Notice recFibNum(3) will be solved at least twice.

24 of 56

DESIGN -

OUTLINE

DEFINITIONS

RECURSIVE FUNCTIONS

TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOI EXAMPLE

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

25 of 56

DESIGN -

DESIGNING A RECURSIVE FUNCTION

I Identify the recursive structure:
I Define the solution of the general problem in terms of

solutions of smaller versions of the problem.
I Make sure the smaller solutions eventually reduce to one of

the base cases.
I Identify base cases, and provide direct and simple

solutions to each base case

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

26 of 56

DESIGN - BINARY SEARCH

BINARY SEARCH REVISITED

I Recall the array search problem given in Programming
Assignment 4

I Given an array a with n elements and value v
I Check if a contains an element with the same value of v

and return its index,
I Otherwise return -1.
I a is sorted in non-decreasing order

I Sequential-search checks v against all elements of the
array a. It does not use the fact that a is sorted.

I Binary search: a faster algorithm which uses the fact that a
is sorted to eliminate half of the elements at each step

I Will do a recursive version of binary-search

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

27 of 56

DESIGN - BINARY SEARCH

BINARY SEARCH

I Search a between indices left and right ,
0 ≤ left ≤ right < n

I Split in the middle mid = left+right
2

I if v < a[mid]
limit search between left and mid − 1.

I if v > a[mid]
limit search between mid + 1 and rigth.

I if v == a[mid]
return mid (element is found)

I Repeat until either element is found or you reach an empty
range.

I If the range is empty (i.e., left > right), return −1 (the
element does not exist in the array)

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

28 of 56

DESIGN - BINARY SEARCH

ITERATIVE IMPLEMENTATION FROM LAB ASSIGNMENT

int binarySearch (int a[], int n, int v) {
// a is sorted and of size n,
// initialize the search range [left ... right] to be [0 ... n-1]
int left = 0, right = n-1;
// loop terminates when search range becomes empty: left > right
// and continues executing when range is still valid: left <= right
while (left <= right) {
// split in the middle.
int mid = (left + right)/2;
if (a[mid] < v) // check to eliminate left half of range
left = mid + 1;// range becomes [mid+1 ... right]

else if (a [mid] > v) // check to eliminate right half of range
right = mid - 1;// range becomes [left ... mid-1]

else // i.e., if (a[mid] == v), then element found
return mid;

}
// if we reach this point, then the range is empty
return -1;// element not found

}

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

29 of 56

DESIGN - BINARY SEARCH

RECURSIVE BINARY SEARCH

General case:
I Split in the middle mid = left+right

2
I v < a[mid]

I Recursively search between left
and mid − 1.

I v > a[mid]
I Recursively search between

mid + 1 and right .

Base cases:
I range is empty

I v does not exist
I return −1
I happens when left > right

I a[mid] = v
I found: return mid

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

30 of 56

DESIGN - BINARY SEARCH

RECURSIVE BINARY SEARCH PROTOTYPE

I We have a, n, and v
I For recursion we need left and right
I The first time left = 0 and right = n − 1,

I so, n is redundant and can be eliminated from the argument
list

I Declaration:
int recBinarySearch(int a[], int left, int right, int v);

I Initial call:
I recBinarySearch(a, 0, n-1, v);

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

31 of 56

DESIGN - BINARY SEARCH

RECURSIVE BINARY SEARCH IMPLEMENTATION

1 int recBinarySearch (int a[], int left, int right, int v) {
2 // a is sorted and 0 <= left, right <= n-1
3 if (left > right) // if range empty/invalid
4 return -1;// element not found
5 // split in the middle.
6 int mid = (left + right)/2;
7

8

9 if (a[mid] < v) { // recursively search a[mid+1 ... right]
10 // pay attention why we return directly here
11 return recBinarySearch(a,mid+1,right,v);
12 }
13 else if (a [mid] > v) { // recursively search a[left ... mid-1]
14 // pay attention why we return directly here
15 return recBinarySearch(a,left,mid-1,v);
16 }
17 else // i.e., if(a[mid] == v) , element is found
18 return mid;
19

20 }

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

32 of 56

DESIGN - BINARY SEARCH

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

` = 0, r = 6
a[mid] = 10

` = 0, r = 2
a[mid] = 4

` = 0, r = 0,
a[mid] = 2

` = 0,
r = −1

` = 1,
r = 0

` = 2, r = 2
a[mid] = 7

` = 2,
r = 1

` = 3,
r = 2

` = 4, r = 6
a[mid] = 18

` = 4, r = 4
a[mid] = 12

` = 4,
r = 4

` = 5,
r = 4

` = 6, r = 6
a[mid] = 22

` = 5,
r = 4

` = 6,
r = 6

v = 18,
18 > 10

return 5, to line 11

v = 6,
6 < 10

return -1,to line 15

v = 6,6 > 4return -1,
to line 11

v = 6,
6 < 7

return -1,
to line 15

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

33 of 56

DESIGN - BINARY SEARCH

FYI: ARRAY PARAMETERS IN RECURSIVE FUNCTIONS

I C++: Typically Arrays are passed by reference and are
NOT copied to recursive calls.

I All the copies of the function work on the same copy of the
array.

I Matlab: The interpreter tries to do the “smart” thing
I For instance, if the array is not changed in the function then

it is not copied.

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

34 of 56

DESIGN - BINARY SEARCH

WHY RECURSION?
I Some of the examples so far are better done iteratively.
I We used them for illustration purposes.
I It is often more elegant to define a recursive solution.

I Typical divide and conquer algorithms.
I More interesting examples will follow

35 of 56

HANOI -

OUTLINE

DEFINITIONS

RECURSIVE FUNCTIONS

TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOI EXAMPLE

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

36 of 56

HANOI -

THE TOWER OF HANOI PROBLEM

I Given 3 needles and n disks of increasing sizes.
I The n disks are originally stacked on needle 1 in increasing

size order with largest at the bottom.
I Target is to move the disks to needle 3.
I Constraint:

I Move one disk at a time.
I The removed disk must be directly placed on one of the

needles.
I A larger disk can not be placed on top of a smaller disk.

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

37 of 56

HANOI -

THE TOWER OF HANOI ANIMATION

Use the tower-of-Hanoi slides by Hofman and Damman

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

38 of 56

HANOI -

TOWER OF HANOI ALGORITHM IDEA

I In general to move n disks from needle 1 to needle 3
1 if n ≥ 2 move top n − 1 disks recursively from needle 1 to

needle 2, using needle 3 as an intermediate needle.
2 Move disk from needle 1 to needle 3
3 If n ≥ 2, move top n − 1 disks recursively from needle 2 to

needle 3, using needle 1 (which is now empty) as an
intermediate needle.

I Base case:

I Do second step only.
I Two-way recursion: the function calls itself twice

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

38 of 56

HANOI -

TOWER OF HANOI ALGORITHM IDEA

I In general to move n disks from needle 1 to needle 3
1 if n ≥ 2 move top n − 1 disks recursively from needle 1 to

needle 2, using needle 3 as an intermediate needle.
2 Move disk from needle 1 to needle 3
3 If n ≥ 2, move top n − 1 disks recursively from needle 2 to

needle 3, using needle 1 (which is now empty) as an
intermediate needle.

I Base case:
I Do second step only.

I Two-way recursion: the function calls itself twice

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

38 of 56

HANOI -

TOWER OF HANOI ALGORITHM IDEA

I In general to move n disks from needle 1 to needle 3
1 if n ≥ 2 move top n − 1 disks recursively from needle 1 to

needle 2, using needle 3 as an intermediate needle.
2 Move disk from needle 1 to needle 3
3 If n ≥ 2, move top n − 1 disks recursively from needle 2 to

needle 3, using needle 1 (which is now empty) as an
intermediate needle.

I Base case:
I Do second step only.

I Two-way recursion: the function calls itself twice

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

39 of 56

HANOI -

RECURSIVE IMPLEMENTATION OF TOWER OF HANOI

The following algorithm prints instructions to move n disks from
needle 1 to needle 3 when called with moveDisks(n,1,3,2);
void moveDisks(int n, int from, int to, int intermediate)
{

if(n>=2) modeDisks(n-1, from,intermediate,to);
// first recursive call

cout << "Move disk " << n << " from " << from <<" to " << to << "." << endl;
// If n ==1, only the count will be executed, hence this is the base case

if(n>=2) modeDisks(n-1, intermediate,to,from);
// second recursive call

}

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

40 of 56

HANOI -

RECURSIVE VS. ITERATIVE SOLUTIONS

I There are usually two ways to solve a particular problem
I Iteration (looping)
I Recursion

I Which method is betteriteration or recursion?
I In addition to the nature of the problem, the other key

factor in determining the best solution method is efficiency.

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

41 of 56

HANOI -

RECURSION MEMORY COSTS

I Every recursive call has its own set of parameters and
local variables

I Whenever a function is called
I Memory space for its formal parameters and local variables

is allocated
I When the function terminates

I That memory space is then deallocated
I Overhead associated with recursive functions:

I Memory space
I Computer time

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

42 of 56

HANOI -

EFFICIENCY: ITERATIVE VS. RECURSIVE

I The choice between the two alternatives depends on the
nature of the problem.

I For problems such as mission control systems
I Efficiency is absolutely critical and dictates the solution

method.
I An iterative solution is often more obvious and easier to

understand than a recursive solution.
I If the definition of a problem is inherently recursive,

sometimes it is a good idea to consider a recursive
solution.

I If the idea of the algorithm is inherently recursive, consider
a recursive solution, e.g.,

I Binary Search, Tower of Hanoi

Oct 1, 2014 Electrical and Computer Engineering (ECE)

EECE 231

43 of 56

HANOI -

SUMMARY

I Recursion is the process of solving a problem by reducing
it to smaller versions of itself.

I A recursive definition or algorithm has one or more base
cases.

I Recursive algorithms are implemented using recursive
functions

I A function is called recursive if it calls itself.
I The solution to a base case is typically obtained directly.

I The base case stops the recursion
I The solution of a general case breaks the problem into

smaller versions of itself.
I A general case must eventually be reduced to a base case.
I Directly recursive: a function calls itself

I Indirectly recursive: A function calls another function that
eventually calls the original.

44 of 56

HANOI -

EECE 231: RECURSION
READING: BIELAJEW, SECTION 9.3

ADDITIONAL REFERENCES: MAILK, CHAPTER 16

	Definitions
	Recursive functions
	Two-way recursion
	Designing a recursive solution
	Binary search

	The tower of Hanoi example

