(z\
American University of Beirut

CAaramsalkzldl

EECE 231: RECURSION
READING: BIELAJEW, SECTION 9.3

ADDITIONAL REFERENCES: MAILK, CHAPTER 16

Oct 1, 2014 Electrical and Computeﬂg Engineering (ECE) N
o = = = D QAC

@AUB . EECE 231

OBJECTIVES

>

Learn recursive definitions
Learn base and general cases in a recursive definition

Appreciate recursive algorithms and the divide and
conquer concept

Learn recursive functions

v

v

v

v

Learn how recursive functions implement recursive
algorithms

(“:‘\l' UB DEFINITIONS -

American University of Beirut
AN

RECURSIVE FUNCTIONS
TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOT EXAMPLE

(#AUB

DEFINITIONS -

RECURSIVE DEFINITIONS

EECE 231
» Recursion: solving a problem by reducing it to smaller
versions of itself

» factorial: recursive definition
» 0l=1ifn=1

(1): the base case
»nl=nx(n—1)ifn>0

(2) : the general case

@A-[.]B DEFINITIONS - EECE 231

RECURSIVE DEFINITIONS — 2

» A recursive definition defines a structure in terms of a
smaller version of itself.

» Every recursive definition must have at least one base
case.

» The general case must eventually reduce the definition into
the base case.

» The base case stops the recursion (reduction of the
problem).

(#AUB

DEFINITIONS -

RECURSIVE ALGORITHMS

EECE 231
» Recursive algorithms are solutions that reduce the problem
into smaller versions of itself.

» MUST have at least one base case.
cases.

» The problem MUST eventually reduce to one of the base
» A recursive function is an implementation of recursion
definitions and algorithms.

» |t is a function that calls itself.

(“:‘\l' UB FUNCTIONS -

American University of Beirut
(S PL VOB e

DEFINITIONS

TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOT EXAMPLE

(#AUB

RECURSIVE FUNCTIONS

FUNCTIONS - EECE 231

» Consider the execution of a recursive function as the
execution of several copies of the recursive function.
» Each call to a recursive function has its own:

>

vV vy VvVvyy

code,

parameters (argument),

local variables,

return value, and

control: knows where to return when done (who called it)

(#AUB

FUNCTIONS -

RECURSIVE FUNCTION CONTROL

EECE 231
» When one of the calls to the recursive function completes
control returns to the calling function
» could be another version of the function, or

» could be the original call of the recursive function

» Execution in the calling function resumes from the point
immediately following the call.

(#AUB

FUNCTIONS -

EXAMPLE racTor1aL

» factorial(n)
» 1ifn=0
» nx(n—1)ifn>1
int factorial(int n) {

// n is a non-negative integer
if (n == 0) {
return 1;
} else {
int factNMinusOne = fact (n-1);
return nxfactNMinusOne;

EECE 231

£ 100f56

@AI_]-B FUNCTIONS -

ALTERNATIVE factorial IMPLEMENTATION

int factorial(int n) {
// n is a non-negative integer
if (n == 0) {
return 1;
}
return nxfact (n-1);

m]

EECE 231

11 of 56

24
fact(4)
num

4;

EXECUTION OF THE factorial IMPLEMENTATION

EECE 231

because num != 0

return 4 * fact(3);
fact(3)

fact(4)

24

num = 3;

return 4 * 6

because num

fact(3) =
1= o \ ;
return 3 * fact(2); return 3 2
faceiz) fact({2) =
um = 2; \\\\
because num != 0
return 2 * fact(l); return 2 * 1
-t fact(l) =
num = 1; \\\\
because num != 0
return 1 * fact(0); return 1 = &
el fact(0) = 1
num = 0;
because num == 0
return 1; return 1
Execution of the expression fact (4)

12 of 56

(#AUB

FUNCTIONS -

INDIRECT RECURSION

EECE 231
» Direct recursion: a function calls itself.

» Indirect recursion: a function f calls other functions that
eventually end up calling f.

m]

13 of 56

(#AUB

FUNCTIONS -
INFINITE RECURSION

EECE 231
» Infinite recursion: every function call results in a recursive
function call.
» In theory it executes forever
» Because computer memory is finite:
» Computer executes until it runs out of memory to make
copies of function variables.
program.

» Unexpected results in terms of termination status of the

base case

» Important: If not intended, it is usually the result of
» missing base case
» the smaller version of the problem does not reduce to the

m]

14 of 56

(#AUB

FUNCTIONS

TRACKING RECURSION

EECE 231
» Consider function:
void f (int n) {
cout << n <" "
if (n >= 1) {
f(n-1);}
}

» Call function:
£(10);

m]

15 of 56

(\ I.]B FUNCTIONS - EECE 231

TRACKING RECURSION

» Consider function:

void f (int n) {
cout << n <" " ;
if (n >= 1) {
f(n-1);}
}

» Call function:
£(10);

» Result: 109876543210

o =

15 of 56

(#AUB

FUNCTIONS -

TRACKING RECURSION - 2

EECE 231
» Consider function:
void g(int n) {
if (n >= 1) {
g(n-1);}

cout << n < " "
}

» Call function:
g(10);

m]

16 of 56

(#AUB

TRACKING RECURSION - 2

FUNCTIONS -

» Consider function:
void g(int n) {
if (n >= 1) {
g(n-1);}
cout << n < " ",

}

» Call function:
g(10);

» Result: 012345678910

m]

EECE 231

16 of 56

(-\ i! UB TWO-WAY RECURSION -

American University of Beirut
(S PL VOB e

DEFINITIONS

RECURSIVE FUNCTIONS

DESIGNING A RECURSIVE SOLUTION
Binary search

THE TOWER OF HANOT EXAMPLE

17 of 56

=,

UB

TWO-WAY RECURSION -

SMALLER IN SIZE

EECE 231
REDUCING A PROBLEM TO TWO SIMILAR PROBLEMS

» Fibonacci numbers:
> a) = 1
> a2 = 1

> anzan_1+an_2ifn23

» Given n compute the Fibonacci number of n

m]

18 of 56

(#AUB

TWO-WAY RECURSION -

FIBONACCI NUMBERS THE ITERATIVE WAY

int FibNum(int n)
{

if (n==1 || n==2) { return 1;}
int previousl=1l, previous2=1, current;
for (int 1i=3; i<=n; 1i=i+1) {
current = previousl+previous2;
previous2 = previousl;
previousl = current;

}

return current;

EECE 231

19 of 56

IJB TWO-WAY RECURSION -

EECE 231

RECURSIVE IMPLEMENTATION FOR FIBONACCI

NUMBERS

» Fibonacci numbers:

» a1 =1

> 32::1

> ap=ap_1+ an_oif
n>3

» Given n compute the

Fibonacci number of n.

int recFibNum(int n) {
// the two base cases
if(n==1 || n==2) { return 1;}
else {

// first recursive call
int prevl = FibNum (n-1);

// second recursive call
int prev2 = FibNum(n-2);
// merge the result
return prevl + prev2;

o = £ 200f56

@AIJB TWO-WAY RECURSION - EECE 231

ALTERNATIVE RECURSIVE FIBONACCI NUMBERS

» Fibonacci numbers:

» a3 =1

> a» =1

> ap=ap_1+apzif
n>3

» Given n compute the

Fibonacci number of n.

int recFibNum(int n) {
// the two base cases
if(n==1 || n==2) { return 1;}

// Note that the else keyword

// can be omitted
return FibNum (n-1) + FibNum(n-2);

o = E 210f56

UB

TWO-WAY RECURSION -

TRACK THE RECURSION OF recFibNum

EECE 231
» Try recFibNum(5) and draw its recursion execution tree.
» Compare to FibNum(5).

» Which one is faster?

» recFibNum is not efficient at all compared to fibNum.
> Why?

m]

22 of 56

(...\.

UB

TWO-WAY RECURSION -

recFibNum vs. FibNum

EECE 231
» The recFibNum repeats solving same smaller size
problems several times.

» recFibNum(5) calls recFibNum(4) and recFibNum(3)

» recFibNum(4) calls recFibNum(3) and recFibNum(2).
» Notice recFibNum(3) will be solved at least twice.

m]

23 of 56

@AUB DESIGN -

American University of Beirut
(S PL VOB e

DEFINITIONS
RECURSIVE FUNCTIONS

TWO-WAY RECURSION

THE TOWER OF HANOT EXAMPLE

24 of 56

(#AUB

DESIGN -

DESIGNING A RECURSIVE FUNCTION

EECE 231
» Identify the recursive structure:

» Define the solution of the general problem in terms of
solutions of smaller versions of the problem.
the base cases.

» Make sure the smaller solutions eventually reduce to one of

» |dentify base cases, and provide direct and simple
solutions to each base case

m]

25 of 56

@A.[.]B DESIGN - BINARY SEARCH EECE 231

BINARY SEARCH REVISITED

» Recall the array search problem given in Programming
Assignment 4
» Given an array a with n elements and value v
» Check if a contains an element with the same value of v
and return its index,
» Otherwise return -1.
» ais sorted in non-decreasing order
» Sequential-search checks v against all elements of the
array a. It does not use the fact that a is sorted.

» Binary search: a faster algorithm which uses the fact that a
is sorted to eliminate half of the elements at each step

» Will do a recursive version of binary-search

@A-[.]B DESIGN - BINARY SEARCH EECE 231

BINARY SEARCH

» Search a between indices left and right,
0<left<right<n
> Split in the middle mid = 49"
» if v < a[mid]

limit search between left and mid — 1.
if v > a[mid|

limit search between mid + 1 and rigth.
if v == a[mid]

return mid (element is found)
Repeat until either element is found or you reach an empty
range.

If the range is empty (i.e., left > right), return —1 (the
element does not exist in the array)

o =

E 270f56

I_]-B DESIGN - BINARY SEARCH EECE 231

ITERATIVE IMPLEMENTATION FROM LAB ASSIGNMENT

int binarySearch (int a[], int n, int v) {
// a is sorted and of size n,
// initialize the search range [left ... right] to be [0 ... n-1]

int left = 0, right = n-1;

// loop terminates when search range becomes empty: left > right

// and continues executing when range is still valid: left <= right
while (left <= right) {

// split in the middle.

int mid = (left + right)/2;

if (a[mid] < v) // check to eliminate left half of range
left = mid + 1;// range becomes [mid+l ... right]

else if (a [mid] > v) // check to eliminate right half of range
right = mid - 1;// range becomes [left ... mid-1]

else // i.e., if (a[mid] == v), then element found

return mid;

}

// 1f we reach this point, then the range is empty
return -1;// element not found

o = £ 280f56

@A[]B DESIGN - BINARY SEARCH

RECURSIVE BINARY SEARCH

General case: . lefttright
» Split in the middle mid = ==579% » range is empty
» v < a[mid] » v does not exist
> return —1
and mid — 1.

EECE 231

Base cases:

» Recursively search between left

» happens when left > right
» v > a[mid]

» almid] =v
» Recursively search between » found: return mid
mid + 1 and right.

o =

£ 290f56

@AIJB DESIGN - BINARY SEARCH

» We have g, n, and v

EECE 231
RECURSIVE BINARY SEARCH PROTOTYPE

» For recursion we need left and right
» The first time left = 0 and right = n—1,

list

» S0, nis redundant and can be eliminated from the argument
» Declaration:

int recBinarySearch(int al], int left, int right, int v);
» Initial call:

» recBinarySearch (a,

0, n-1, v);

m]

30 of 56

I_]B DESIGN - BINARY SEARCH EECE 231

RECURSIVE BINARY SEARCH IMPLEMENTATION

1 int recBinarySearch (int a[], int left, int right, int v) {
2 // a is sorted and 0 <= left, right <= n-1

3 if (left > right) // if range empty/invalid

4 return -1;// element not found

5 // split in the middle.

6 int mid = (left + right)/2;

7

8

9 if (a[mid] < wv) { // recursively search a[mid+l ... right]
10 // pay attention why we return directly here

11 return recBinarySearch(a,mid+1, right,v);

12

13 else if (a [mid] > v) { // recursively search a[left ... mid-1]
14 // pay attention why we return directly here

15 return recBinarySearch(a,left,mid-1,v);

16 }

17 else // i.e., if(a[mid] == v) , element is found

18 return mid;

19

20 }

o = £ 310f56

@AIJB DESIGN - BINARY SEARCH

EECE 231
TRACE OF EXECUTION OF recBinarySearch
int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found
{=0,r=6
a[mid] = 10
(=0,r=2 (=4,r=6
a[mid] = 4 a[mid] = 18
(=0,r=0, (=2,r=2 (=4,r=4 (=6,r=6
a[mid] =2 a[lmid] =7 a[mid] = 12 a[mid] = 22
(=0, (=1,][r=2, (=3,][c=4, (=5,][(=5, (=6,
r=-1 r=01|r=1 r=2||r=4 r=4||r=4 r==6

32 of 56

@AIJB DESIGN - BINARY SEARCH

EECE 231
TRACE OF EXECUTION OF recBinarySearch
int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found
{=0,r=6
a[mid] = 10
v =18
{=0,r=2 18> 10 {=4,r=6
a[mid] = 4 a[mid] = 18
(=0,r=0, (=2,r=2 (=4,r=4 (=6,r=6
a[mid] =2 a[lmid] =7 a[mid] = 12 a[mid] = 22
(=0, (=1,][r=2, (=3,][c=4, ¢(=5,|[¢=5, (=8,
r=-1 r=01|r=1 r=2||r=4 r=4||r=4 r==6

32 of 56

IJB DESIGN - BINA . EECE 231

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,l2,l8,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

0=0,r=6|clurn 5 toline 11
a[mid] = 10

(=0,r=2 5-10 |t=4r=6
a[mid] = 4 a[mid] = 18
(=0,r=0, (=2r=2 (=4,r=4 (=6,r=6
a[mid] =2 a[lmid] =7 a[mid] = 12 a[mid] = 22
(=0, (=1,|[t=2, (=3,|[r=4, (=5,][(=5, (=6,
r=-—1 r=0||r=1 r=2\|r=4 r=4||r=4 r==6

o = E 320f56

IJB DESIGN - BINA . EECE 231

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,l2,l8,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

0=0,r=6|clurn 5 toline 11

a[mid] = 10
=6,)
L=0,r=2|" 10 18> 10 {=4,r=6
almid] = 4 a[mid] =18
(=0,r=0, (=2,r=2 (=4,r=4 (=6,r=6
a[mid] =2 a[lmid] =7 a[mid] = 12 a[mid] = 22
=0, (=1, |t=2, (=3,| [L=4, (=5||t=5, =6,
r=-—1 r=0||r=1 r=2\|r=4 r=4||r=4 r==6

o = E 320f56

IJB DESIGN - BINA . EECE 231

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,l2,l8,22};
int idx = recBinarySearch(A,0,6,18);// return 5

idx = recBinarySearch(A,0,6,6); // return -1, not found

0=0,r=6|clurn 5 toline 11
a[mid] = 10
=6, ;
£=0,r=21"6<10 1510 |[L=4,r=6
almid] = 4 almid] — 18
v=606>4
{=0,r=0, (=2,r=2 (=4,r=4 [=6.r=-6
almid] =2 almid] =7 almid] = 12 almid] = 22
=0, (=1,]le=2, (=3 [r=4, (=5, [c=5, =Ty
r=-—1 r=0||r=1 r=2\|r=4 r=4||r=4 r==6

o = E 320f56

UB

DESIGN - BINA

EECE 231
TRACE OF EXECUTION OF recBinarySearch
int A[]={2,4,7,10,12,18,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found
0=0,r=6|clurn 5 toline 11
a[mid] = 10
1510 |[t=4r=6
a[mid] = 18
(=0,r=0, (=4,r=4 (=6,r=6
a[mid] =2 a[mid] = 12 a[mid] = 22
(=0, =1,|[t=2 =3, [t=4, (=5,][(=5, (=6,
r=-1 =0 =2||r=4 r=4||r=4 r==6

32 of 56

IJB DESIGN - BINA . EECE 231

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,l2,l8,22};
int idx = recBinarySearch(A,0,6,18);// return 5

idx = recBinarySearch(A,0,6,6); // return -1, not found

0=0,r=6|clurn 5 toline 11
a[mid] = 10
=6,)
£=0,r=21"6<10 510 |t=4r=6
almid] = 4 almid] — 18
v=606>4
t=0,r=0, (=2,r=2 (=4,r=4 [=6.r=-6
almid] =2 amid] =7 almid] = 12 almid] = 22
return -1,
to line 15 V=86,
£=0, (=1[e=2]6<7 [(=3][t=4 (=5,[t=5, =
r=-—1 r=0||r=1 r=2\|r=4 r=4||r=4 r==6

o = E 320f56

IJB DESIGN - BINA . EECE 231

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,l2,l8,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

0=0,r=6|clurn 5 toline 11

a[mid] = 10
~6, :
L=0,r=2|" 10 18> 10 {=4,r=6
a[mid] = 4 a[mid] = 18
turn -1) v=66>4
¢=0,r=09inetl (—4r=4 (—6r=6
a[mid] =2 a[mid] = 12 a[mid] = 22
return -1,
to line 15 V=86,
(=0, (=1, 6<7 |t=3][t=4, (=5,][(=5, (=6,
r=-1 r=0 r=4 r=4||r=4 r==6

E 320f56

IJB DESIGN - BINARY SEARCH EECE 231

TRACE OF EXECUTION OF recBinarySearch

int A[]={2,4,7,10,l2,l8,22};
int idx = recBinarySearch(A,0,6,18);// return 5
idx = recBinarySearch(A,0,6,6); // return -1, not found

return -1,to line 1

0=0,r=6|clurn 5 toline 11
a[mid] = 10

=6, ;
t=0,r=21"g<10 1610 |[£=4r=86
almid] = 4 a[mid] =18

turn -1) v=66>4
¢=0,r=01lne 11 (=d4r=4 (=676
a[mid] =2 a[mid] = 12 a[mid] = 22
return -1,
to line 15 V=86,
=0, =1, 6<7 [{=3,||(=4, t=5]|l=5, (=6,
r=-1 r=0 r=4 r=4||r=4 r==6

32 of 56

DESIGN - BINARY SEARCH

EECE 231

FYI: ARRAY PARAMETERS IN RECURSIVE FUNCTIONS
» C++: Typically Arrays are passed by reference and are
NOT copied to recursive calls.

» All the copies of the function work on the same copy of the
array.

it is not copied.

» Matlab: The interpreter tries to do the “smart” thing
» For instance, if the array is not changed in the function then

m]

33 of 56

@A[]B DESIGN - BINARY SEARCH EECE 231

WHY RECURSION?

» Some of the examples so far are better done iteratively.
» We used them for illustration purposes.

» It is often more elegant to define a recursive solution.
» Typical divide and conquer algorithms.

» More interesting examples will follow

o = =

34 of 56

@AUB HANOI -

American University of Beirut

DEFINITIONS
RECURSIVE FUNCTIONS

TWO-WAY RECURSION

DESIGNING A RECURSIVE SOLUTION
Binary search

@AIJB HANOI - EECE 231

THE TOWER OF HANOI PROBLEM

» Given 3 needles and n disks of increasing sizes.

» The ndisks are originally stacked on needle 1 in increasing
size order with largest at the bottom.

» Target is to move the disks to needle 3.

» Constraint:

» Move one disk at a time.

» The removed disk must be directly placed on one of the
needles.

» A larger disk can not be placed on top of a smaller disk.

o = £ 360f56

THE TOWER OF HANOI ANIMATION

EECE 231
Use the tower-of-Hanoi slides by Hofman and Damman

m]

37 of 56

@A HANOI - EECE 231

TOWER OF HANOI ALGORITHM IDEA

» In general to move n disks from needle 1 to needle 3

1 if n > 2 move top n — 1 disks recursively from needle 1 to
needle 2, using needle 3 as an intermediate needle.

2 Move disk from needle 1 to needle 3

3 If n> 2, move top n — 1 disks recursively from needle 2 to
needle 3, using needle 1 (which is now empty) as an
intermediate needle.

» Base case:

oraz» =

38 of 56

@A HANOI - EECE 231

TOWER OF HANOI ALGORITHM IDEA

» In general to move n disks from needle 1 to needle 3

1 if n > 2 move top n — 1 disks recursively from needle 1 to
needle 2, using needle 3 as an intermediate needle.

2 Move disk from needle 1 to needle 3

3 If n> 2, move top n — 1 disks recursively from needle 2 to
needle 3, using needle 1 (which is now empty) as an
intermediate needle.

» Base case:
» Do second step only.

oraz» =

38 of 56

@A HANOI - EECE 231

TOWER OF HANOI ALGORITHM IDEA

» In general to move n disks from needle 1 to needle 3

1 if n > 2 move top n — 1 disks recursively from needle 1 to
needle 2, using needle 3 as an intermediate needle.
2 Move disk from needle 1 to needle 3
3 If n> 2, move top n — 1 disks recursively from needle 2 to
needle 3, using needle 1 (which is now empty) as an
intermediate needle.
» Base case:

» Do second step only.
» Two-way recursion: the function calls itself twice

o = £ 380f56

EECE 231

RECURSIVE IMPLEMENTATION OF TOWER OF HANOI

The following algorithm prints instructions to move n disks from
needle 1 to needle 3 when called with moveDisks (n, 1,3,2);

void moveDisks (int n, int from, int to, int intermediate)

{
if (n>=2) modeDisks (n-1, from,intermediate,to);
// first recursive call

cout << "Move disk " << n << " from " << from <<" to "

<< to << "." << endl;
// If n ==1, only the count will be executed, hence this is the base case
if (n>=2) modeDisks (n-1, intermediate,to, from);
// second recursive call
}
=] = =

39 of 56

(...\.

UB

RECURSIVE VS. ITERATIVE SOLUTIONS

EECE 231

» There are usually two ways to solve a particular problem
» lteration (looping)
» Recursion

» Which method is betteriteration or recursion?

» In addition to the nature of the problem, the other key
factor in determining the best solution method is efficiency.

m]

40 of 56

(#AUB

HANOI -

RECURSION MEMORY COSTS

EECE 231
» Every recursive call has its own set of parameters and
local variables

» Whenever a function is called

is allocated

» Memory space for its formal parameters and local variables
» When the function terminates

» That memory space is then deallocated

» Overhead associated with recursive functions

» Memory space
» Computer time

m]

41 of 56

@A-UB HANOI - EECE 231

EFFICIENCY: ITERATIVE VS. RECURSIVE

» The choice between the two alternatives depends on the
nature of the problem.

» For problems such as mission control systems

» Efficiency is absolutely critical and dictates the solution
method.

» An iterative solution is often more obvious and easier to
understand than a recursive solution.

» If the definition of a problem is inherently recursive,
sometimes it is a good idea to consider a recursive
solution.

» If the idea of the algorithm is inherently recursive, consider
a recursive solution, e.g.,

» Binary Search, Tower of Hanoi

&N

SUMMARY

>

EECE 231

Recursion is the process of solving a problem by reducing
it to smaller versions of itself.
A recursive definition or algorithm has one or more base
cases.
Recursive algorithms are implemented using recursive
functions
A function is called recursive if it calls itself.
The solution to a base case is typically obtained directly.

» The base case stops the recursion
The solution of a general case breaks the problem into
smaller versions of itself.
A general case must eventually be reduced to a base case.
Directly recursive: a function calls itself

» Indirectly recursive: A function calls another function that

eventually calls the original.

(#AUB

HANOI -
American University of Beirut

EECE 231: RECURSION

READING: BIELAJEW, SECTION 9.3

ADDITIONAL REFERENCES: MAILK, CHAPTER 16

m]

44 of 56

	Definitions
	Recursive functions
	Two-way recursion
	Designing a recursive solution
	Binary search

	The tower of Hanoi example

