
C++ Programming:
Control Structures

Some material taken from: C++ Programming: Program Design Including Data Structures

C++ Programming: Program Design Including Data Structures 2

Objectives

• Learn about control structures
• Examine relational and logical operators
• Explore how to form and evaluate logical

(Boolean) expressions
• Discover how to use the selection control

structures if, and if...else in a program

• Learn about the repetition (looping) control
structures while and for

C++ Programming: Program Design Including Data Structures 3

Control Structures

• A computer can proceed:
− In sequence
− Selectively (branch) - making a choice
− Repetitively (iteratively) - looping

• Some statements are executed only if certain
conditions are met

• A condition is represented by a logical
(Boolean) expression that can be true or false

• A condition is met if it evaluates to true

C++ Programming: Program Design Including Data Structures 5

Relational Operators

• Relational operators:
− Allow comparisons

− Require two operands (binary)

− Return 1 if expression is true, 0 otherwise

• Comparing values of different data types may
produce unpredictable results
− For example, 8 < '5' should not be done

• Any nonzero value is treated as true

C++ Programming: Program Design Including Data Structures 7

Logical (Boolean) Operators

• Logical (Boolean) operators enable you to
combine logical expressions

• Three logical (Boolean) operators:
− ! - not
− && – and
− || - or

• Logical operators take logical values as
operands and yield logical values as results

• ! is unary; && and || are binary operators
• Putting ! in front of a logical expression

reverses its value

C++ Programming: Program Design Including Data Structures 9

Order of precedence of operators

• Same precedence operators are evaluated from
left to right

• Use parenthesis for clarity

C++ Programming: Program Design Including Data Structures 10

Caution with mixing binary operators

• The following expression appears to
represent a comparison of 0, num, and 10:

0 <= num <= 10
• It always evaluates true because 0 <= num

evaluates to either 0 or 1, and 0 <= 10 is true
and 1 <= 10 is true

• The correct way to write this expression is:
0 <= num && num <= 10

C++ Programming: Program Design Including Data Structures 11

Short-Circuit Evaluation

• Short-circuit evaluation: evaluation of a logical
expression in C++ starts from left to right and
stops (for efficiency) as soon as the value of
the expression is known

• Example:

(age >= 21) || (x == 5) //Line 1

(grade == ‘A’) && (x >= 7) //Line 2

C++ Programming: Program Design Including Data Structures 12

Logical (Boolean) Expressions

• The bool Data Type and Logical (Boolean)
Expressions

− The data type bool has logical (Boolean)
values true and false

− bool, true, and false are reserved words

− The identifier true has the value 1

− The identifier false has the value 0

C++ Programming: Program Design Including Data Structures 13

Example

• Logical operators
• LogicalOperators.cpp

C++ Programming: Program Design Including Data Structures 14

Selection

C++ Programming: Program Design Including Data Structures 15

One-Way (if) Selection

• The syntax of one-way selection is:

if(expression)

statement

• Statement is executed if the value of the
expression is true

• Statement is bypassed if the value is false;
program goes to the next statement

C++ Programming: Program Design Including Data Structures 16

One-Way (if) Selection (continued)

• The expression is sometimes called a
decision maker because it decides whether to
execute the statement that follows it

• The statement following the expression is
sometimes called the action statement

• The expression is a logical expression

• The statement is any C++ statement

• if is a reserved word

C++ Programming: Program Design Including Data Structures 18

Two-Way (if…else) Selection

• Two-way selection takes the form:
if(expression)

statement1
else

statement2
• If expression is true, statement1 is executed

otherwise statement2 is executed
• statement1 and statement2 are any C++

statements
• else is a reserved word

C++ Programming: Program Design Including Data Structures 20

Compound (Block of) Statement

• Compound statement (block of statements):
{

statement1;
statement2;
.
.
.
statementn;

}
• A compound statement is a single statement

C++ Programming: Program Design Including Data Structures 21

Compound Statement Example

if(age > 21)
{

cout<<" Eligible to vote."<<endl;
cout<<" No longer a minor."<<endl;

}
else
{

cout<<"Not eligible to vote."<<endl;
cout<<"Still a minor."<<endl;

}

C++ Programming: Program Design Including Data Structures 22

Nested if

• Nesting: one control statement in another
• An else is associated with the most recent if

that has not been paired with an else
• For example:

if(score >= 90)
cout<<"The grade is A"<<endl;

else if(score >= 80)
cout<<"The grade is B"<<endl;

else
cout<<"The grade is C"<<endl;

C++ Programming: Program Design Including Data Structures 23

Example 1

• Compute the absolute value of a given
number

• AbsoluteValue.cpp

C++ Programming: Program Design Including Data Structures 24

Absolute Value Example

int number, temp;
cout << "Please enter an integer: ";
cin >> number;
cout << endl;

temp = number;
if (number < 0)

temp = -number;

cout << "The absolute value of " << number
<< " is " << temp << endl;

C++ Programming: Program Design Including Data Structures 25

Example 2

• Compare two given numbers
• CompareNumbers.cpp

C++ Programming: Program Design Including Data Structures 26

Compare Example

int num1, num2, larger;
cout << "Enter any two integers: ";
cin >> num1 >> num2; cout << endl;

if (num1 > num2) {
larger = num1;
cout << "The larger number is " << larger << endl;}

else if (num2 > num1) {
larger = num2;
cout << "The larger number is " << larger << endl; }

else
cout << "Both numbers are equal." << endl;

More selection structures

• Conditional operator
• Switch structure

C++ Programming: Program Design Including Data Structures 27

C++ Programming: Program Design Including Data Structures 28

Conditional Operator (?:)

• Conditional operator (?:) takes three
arguments (ternary)

• Syntax for using the conditional operator:

expression1 ? expression2 : expression3

• This evaluates to an expression

• If expression1 is true, the result of the
conditional expression is expression2.
Otherwise, the result is expression3

C++ Programming: Program Design Including Data Structures 29

Example

• Example:

The statements

if(a>=b) max = a;

else max = b;

can be expressed, using the conditional
operator, as

max = (a>=b)? a : b;

C++ Programming: Program Design Including Data Structures 30

switch Structure

• Switch structure: alternate to if-else

• Syntax:
switch (expression)

{

case value 1: statements1

break;

case value 2: statements2

break;

…

case value n: statementsn

break;

default : statements

}

• Advice: Use if-else instead of switch

C++ Programming: Program Design Including Data Structures 31

Example

switch(grade) // grade is a variable of type char

{

case ‘A’: cout<<“The grade is A”;

cout <<“!!!”;

break;

case ‘B’: cout<<“The grade is B”;

break;

case ‘C’: cout<<“The grade is C”;

break;

default : cout << “The grade is invalid”;

}

C++ Programming: Program Design Including Data Structures 32

Summary

• Control structures alter normal control flow

• Most common control structures are selection
and repetition

• Relational operators: ==, <, <=, >, >=, !=

• Logical expressions evaluate to 1 (true) or 0
(false)

• Logical operators: ! (not), && (and), || (or)

C++ Programming: Program Design Including Data Structures 33

Summary

• Two selection structures: one-way selection and two-
way selection

• The expression in an if or if...else structure is usually
a logical expression

• else is not a standalone statement in C++. Every else
has a related if

• A sequence of statements enclosed between braces,
{ and }, is called a compound statement or block of
statements

• More selection structures: conditional operator,
switch

C++ Programming: Program Design Including Data Structures 34

Repetition

C++ Programming: Program Design Including Data Structures 35

Why Is Repetition Needed?

• Repetition allows you to efficiently use
variables

• Can input, add, and average multiple
numbers using a limited number of variables

• For example, to add five numbers:
− Declare a variable for each number, input the

numbers and add the variables together
− Create a loop that reads a number into a variable

and adds it to a variable that contains the sum of
the numbers

C++ Programming: Program Design Including Data Structures 36

The while Loop

• The general form of the while statement is:
while(expression)

statement
• while is a reserved word
• Statement can be simple or compound
• Expression acts as a decision maker and is a

logical expression
• Statement is called the body of the loop
• The parentheses are part of the syntax

C++ Programming: Program Design Including Data Structures 37

The while Loop (continued)

• Expression provides an entry condition

• Statement executes if the expression initially
evaluates to true

• Loop condition is then reevaluated

• Statement executes until the expression is no
longer true

C++ Programming: Program Design Including Data Structures 38

The while Loop (continued)

• Infinite loop: continues to execute endlessly

• Can be avoided by including statements in
the loop body that assure exit condition will
eventually be false

C++ Programming: Program Design Including Data Structures 39

Example

• Print the nonnegative multiple of 5 up to 20
• PrintSomeNumbers.cpp

C++ Programming: Program Design Including Data Structures 40

Print multiple of 5 up to 20 example

int counter; //loop control variable
counter = 0; // initialize counter

while(counter <= 20)
{

cout <<counter<<" ";
counter = counter +5;

}

cout << endl;

C++ Programming: Program Design Including Data Structures 41

C++ Programming: Program Design Including Data Structures 42

Counter-Controlled while Loops

• If you know exactly how many pieces of data
need to be read, the while loop becomes a
counter-controlled loop

• The syntax is:
counter = 0;
while(counter < N)
{

.
counter++;
.

}

C++ Programming: Program Design Including Data Structures 43

Example

• Compute the sum and average of a list of
integers.
Ask the user first to enter the number of
integers in the list. Then the user enters the
integers in the list one by one.

• CountControl.cpp

C++ Programming: Program Design Including Data Structures 44

Compute the sum and average
example
int limit; //variable to store the number of items in the list
int number; //variable to store the number
int sum; //variable to store the sum
int counter; //loop control variable

cout << "Enter the number of integers in the list: ";
cin >> limit;

sum = 0; counter = 0;
cout<<"Enter the numbers:"<<endl;
while (counter < limit) {

cin >> number;
sum = sum + number;
counter++;

}

C++ Programming: Program Design Including Data Structures 45

Compute the sum and average
example (continued)

cout << "The sum of the " << limit
<< " numbers = " << sum << endl;

if (counter != 0)
cout << "The average = "

<< static_cast<double>(sum) / counter << endl;
else

cout << "No input." << endl;

• static_cast<double>(sum): converts sum from int to double

• We can use also sum+0.0 instead of static_cast<double>(sum)

C++ Programming: Program Design Including Data Structures 46

Sentinel-Controlled while Loops

• Don’t know how many entries to be read
• Know that last entry is a special value, called sentinel
• Sentinel variable is tested in the condition and loop

ends when sentinel is encountered
• The syntax is:

cin>>variable;
while(variable != sentinel)
{

.
cin>> variable;
.

}

C++ Programming: Program Design Including Data Structures 47

Example

• Sentinel version of the previous example:
compute the sum and the average of a list of
number

• SentinelControl.cpp

C++ Programming: Program Design Including Data Structures 48

Sum and the average: sentinel
controlled example

int number; //variable to store the number
int sum = 0; //variable to store the sum
int count = 0; //variable to store the total numbers read

cout << “ Enter numbers ending with “ << SENTINEL << endl;

cin >> number;
while (number != SENTINEL) {

sum = sum + number;
count++;
cin >> number;

}
// rest as before

C++ Programming: Program Design Including Data Structures 49

The for-loop

• Typically used as an alternative of counter-
controlled while-loop

• The general form of the for statement is:
for(initial statement; loop condition; update statement)

statement

• The initial statement, loop condition, and
update statement are called for loop control
statements

C++ Programming: Program Design Including Data Structures 50

C++ Programming: Program Design Including Data Structures 51

The for Loop (continued)

• The for loop executes as follows:
− initial statement executes
− loop condition is evaluated

• If loop condition evaluates to true
• Execute for loop statement
• Execute update statement
• Repeat previous step until the loop

condition evaluates to false
• initial statement initializes a variable

C++ Programming: Program Design Including Data Structures 52

The for Loop (continued)

• Use the initial statement to initialize your
control variable, as it is first to be executed
and is executed only once

• If the loop condition is initially false, the loop
body does not execute

• Use the update statement to change the
value of the loop control variable which
eventually sets the value of the loop condition
to false on termination

• The for loop executes indefinitely if the loop
condition is always true

C++ Programming: Program Design Including Data Structures 53

Example

• Determine the sum of the first n positive
numbers

• SumNNumbers.cpp

C++ Programming: Program Design Including Data Structures 54

Sum of the first n positive numbers:
for loop example

int counter; //loop control variable
int sum; //variable to store the sum of numbers
int N; //variable to store the number of first positive integers to be added

cout << "Enter the number of positive integers to be added: ";
cin >> N;

sum = 0;
cout << endl;

for (counter = 1; counter <= N; counter++)
sum = sum + counter;

cout << "The sum of the first " << N << " positive integers is "
<< sum << endl;

C++ Programming: Program Design Including Data Structures 55

Nested Control Structures

• Suppose we want to create the following
pattern

*
**

• In the first line, we want to print one star, in
the second line two stars and so on

C++ Programming: Program Design Including Data Structures 56

Nested Control Structures
(continued)
• Since five lines are to be printed, we start with

the following for statement
for(i = 1; i <= 5 ; i++)

• The value of i in the first iteration is 1, in the
second iteration it is 2, and so on

• Can use the value of i as limit condition in
another for loop nested within this loop to
control the number of starts in a line

C++ Programming: Program Design Including Data Structures 57

Nested Control Structures
(continued)
• The syntax is:

for(i = 1; i <= 5 ; i++)
{

for(j = 1; j <= i; j++)
cout<<"*";

cout<<endl;
}

C++ Programming: Program Design Including Data Structures 58

Nested Control Structures
(continued)
• What pattern does the code produce if we replace the

first for statement with the following?
for (i = 5; i >= 1; i--)

• That is,

for (i = 5; i >= 1; i--)

{
for(j = 1; j <= i; j++)

cout<<"*";
cout<<endl;

}

C++ Programming: Program Design Including Data Structures 59

Nested Control Structures
(continued)
• Answer:

**
*

Using Boolean Variables in Loops:
Testing Primality Example
• An integer if n >1 is prime if it has no (positive)

divisors other than 1 and n itself
• Given integer n, check if n is prime
if (n<=1) cout<<“not prime”;
else {

bool isPrime = true;
… look for evidence that n is not prime: a divisor of n
… if divisor found, set isPrime to false
if(isPrime==true) // or equivalently: if(isPrime)

cout<<“prime”;
else cout<<“not prime”;

}

C++ Programming: Program Design Including Data Structures 60

Using Boolean Variables in Loops:
Testing Primality Example (Continued)

if (n<=1) cout<<“not prime”;
else {

bool isPrime = true;
int d = 2;
while(d<= n-1) {

if(n%d == 0) isPrime =false;
d++;

}
if(isPrime) cout<<“prime”; else cout<<“not prime”;

}

C++ Programming: Program Design Including Data Structures 61

Using Boolean Variables in Loops:
Testing Primality Example (Continued)

Faster Test: stop looking for divisors when you find one

if (n<=1) cout<<“not prime”;
else {

bool isPrime = true;
int d = 2;
while(d<= n-1 && isPrime == ture) {
// or equivalently: while(d<=n-1&& isPrime)

if(n%d == 0) isPrime =false;
d++;

}
if(isPrime) cout<<“prime”; else cout<<“not prime”;

}

C++ Programming: Program Design Including Data Structures 62

C++ Programming: Program Design Including Data Structures 63

Break & Continue Statements

• break and continue alter the flow of control

• When the break statement executes in a
repetition structure, it forces control to exit the
structure

• The break statement can be used in while
and for loops

C++ Programming: Program Design Including Data Structures 64

Break & Continue Statements
(continued)
• The break statement is used for two

purposes:
1. To exit early from a loop
2. To skip the remainder of the switch structure

• After the break statement executes, the
program continues with the first statement
after the structure

• The use of a break statement in a loop can
eliminate the use of certain (flag) variables

C++ Programming: Program Design Including Data Structures 65

Break & Continue Statements
(continued)

• continue is used in while and for structures

• When executed in a loop

− It skips remaining statements and proceeds
with the next iteration of the loop

C++ Programming: Program Design Including Data Structures 66

Break & Continue Statements
(continued)

• In a while structure

− Expression (loop-continue test) is evaluated
immediately after the continue statement

• In a for structure, the update statement is
executed after the continue statement

− Then the loop condition executes

C++ Programming: Program Design Including Data Structures 67

Examples (Continued)

• Primality test speedup using the break statement (form Programming
Assignment 2):

// to check if integer n is prime

bool isPrime = true;
for(int i=2;i*i<=n; i++)

if(n%i == 0)
{

isPrime =false;
break;

}

if (n==1) isPrime = false; // 1 is not prime by convention
if(isPrime) cout <<n<<“ is Prime.”;
else cout <<n<<“ is not Prime.”;

C++ Programming: Program Design Including Data Structures 68

Summary

• We studied two repetition structures: while,
for, … more later on

• While and for are reserved word
• while: expression is the decision maker, and

the statement is the body of the loop
• In a counter-controlled while loop,

− Initialize counter before loop
− Body must contain a statement that changes the

value of the counter variable

C++ Programming: Program Design Including Data Structures 69

Summary

• A sentinel-controlled while loop uses a
sentinel to control the while loop

• for loop: simplifies the writing of a count-
controlled while loop

• Nested control structures

• Break and continue statements

C++ Programming: Program Design Including Data Structures 70

Plan

• To study more interesting examples, need to
store and manipulate a list of data

• Need Arrays
• Plan:

− An introduction to arrays
− Control structures with arrays

