C++ Programming:
Control Structures

Some material taken from: C++ Programming: Program Design Including Data Structures

Objectives

 Learn about control structures
« Examine relational and logical operators

« Explore how to form and evaluate logical
(Boolean) expressions

* Discover how to use the selection control
structures if, and if...else in a program

« Learn about the repetition (looping) control
structures while and for

C++ Programming: Program Design Including Data Structures

Control Structures

A computer can proceed:
In sequence
Selectively (branch) - making a choice
Repetitively (iteratively) - looping
Some statements are executed only if certain
conditions are met

A condition is represented by a logical
(Boolean) expression that can be true or false

A condition is met if it evaluates to true

C++ Programming: Program Design Including Data Structures 3

false

3G 3

a. Sequence b. Selection c. Repetition

Figure 4-1 Flow of execution

Relational Operators

* Relational operators:
Allow comparisons
Require two operands (binary)

Return 1 if expression is true, 0 otherwise

« Comparing values of different data types may
produce unpredictable results

For example, 8 <'5' should not be done

* Any nonzero value is treated as true

C++ Programming: Program Design Including Data Structures

Table 4-1 Relational Operators in C++

o equal to

|= not equal to

< less than

<m less than or equal to
> greater than

>= greater than or equal to

Logical (Boolean) Operators

* Logical (Boolean) operators enable you to
combine logical expressions

* Three logical (Boolean) operators:
I - not
&& — and
|| - or

* Logical operators take logical values as
operands and yield logical values as results

* lis unary; && and || are binary operators

« Putting ! in front of a logical expression
reverses its value

C++ Programming: Program Design Including Data Structures

Table 4-5 The ! (not) Operator

R L

true (nonzerq) false (0)
false (0) true (1)

Table 4-6 The && (and) Operator

Expression M Expression1 && Expression2

true {(nonzero) true (nonzero) true (1)

true (nonzero) false (0) false (0)
false (0) true (nonzero) false (0)
false (0) false (0) false (0)

Table 4-7 The || (or) Operator

Expression M Expression |l Expression2

true (nonzergo) true (nonzeroQ) true (1)
true (nonzero) false (0) true (1)
false (0) true (nonzero) true (1)

false (0) false (0) false (0)

Order of precedence of operators

Table 4-8 Precedence of Operators

!, +, = (unary operators) first

® /0% second
+, - third
€, <=, >=, > fourth
== = fifth
&& sixth

| | seventh
= (assignment operator) last

« Same precedence operators are evaluated from
left to right

« Use parenthesis for clarity

C++ Programming: Program Design Including Data Structures

Caution with mixing binary operators

* The following expression appears to
represent a comparison of 0, num, and 10:

O <=num<=10

* |t always evaluates true because 0 <= num
evaluates to either O or 1, and 0 <= 10 is true
and 1 <= 10 is true

* The correct way to write this expression is:
0 <= num && num <= 10

C++ Programming: Program Design Including Data Structures

10

Short-Circuit Evaluation

« Short-circuit evaluation: evaluation of a logical
expression in C++ starts from left to right and
stops (for efficiency) as soon as the value of
the expression is known

 Example:
(age >=21) || (x == 9) //Line 1

(grade =="'A’) && (x >=7) //[Line 2

C++ Programming: Program Design Including Data Structures 11

Logical (Boolean) Expressions

* The bool Data Type and Logical (Boolean)
Expressions

The data type bool has logical (Boolean)
values true and false

bool, true, and false are reserved words
The identifier true has the value 1

The identifier false has the value 0

C++ Programming: Program Design Including Data Structures

12

Example

* Logical operators
* LogicalOperators.cpp

C++ Programming: Program Design Including Data Structures

13

Selection

C++ Programming: Program Design Including Data Structures

14

One-Way (if) Selection

* The syntax of one-way selection is:
if(expression)

statement

« Statement is executed if the value of the
expression is true

« Statement is bypassed if the value is false;
program goes to the next statement

C++ Programming: Program Design Including Data Structures

15

One-Way (if) Selection (continued)

 The expression is sometimes called a
decision maker because it decides whether to
execute the statement that follows it

« The statement following the expression is
sometimes called the action statement

* The expression is a logical expression
* The statement is any C++ statement

e |fis a reserved word

C++ Programming: Program Design Including Data Structures 16

false

!

Figure 4-2 One-way selection

Two-Way (if...else) Selection

« Two-way selection takes the form:
if(expression)
statement1
else
statement2

* If expression is true, statement1 is executed
otherwise statement2 is executed

« statement1 and statement2 are any C++
statements

e else is areserved word

C++ Programming: Program Design Including Data Structures 18

true

>?<

Figure 4-3 Two-way selection

Compound (Block of) Statement

« Compound statement (block of statements):

{
statement1;
statement2;
statementn;
}

* A compound statement is a single statement

C++ Programming: Program Design Including Data Structures

20

Compound Statement Example

if(age > 21)
{

cout<<" Eligible to vote."<<end|I;
cout<<" No longer a minor."<<endl;

}

else

{

cout<<"Not eligible to vote."<<endl;
cout<<"Still a minor."<<endl;

}

C++ Programming: Program Design Including Data Structures

21

Nested If

 Nesting: one control statement in another

* An else is associated with the most recent if
that has not been paired with an else

* For example:
if(score >= 90)
cout<<"The grade is A"<<endI;
else if(score >= 80)
cout<<"The grade is B"<<endI;

else
cout<<"The grade is C"<<end];

C++ Programming: Program Design Including Data Structures

22

Example 1

« Compute the absolute value of a given
number

* AbsoluteValue.cpp

C++ Programming: Program Design Including Data Structures

23

Absolute Value Example

iInt number, temp;

cout << "Please enter an integer: ",
cin >> number;

cout << endl;

temp = number;
if (number < 0)
temp = -number;

cout << "The absolute value of " << number
<<"|s" << temp << endi;

C++ Programming: Program Design Including Data Structures

24

Example 2

« Compare two given numbers
« CompareNumbers.cpp

C++ Programming: Program Design Including Data Structures

25

Compare Example

int num1, numz2, larger;
cout << "Enter any two integers: ";
cin >> num1 >> num2; cout << endl;

if (num1 > num?2) {

larger = numf1;

cout << "The larger number is " << larger << endl;}
else if (num2 > num1) {

larger = numz2;

cout << "The larger number is " << larger << endl; }
else

cout << "Both numbers are equal." << end|;

C++ Programming: Program Design Including Data Structures

26

More selection structures

« Conditional operator
e Switch structure

C++ Programming: Program Design Including Data Structures

27

Conditional Operator (?:)

« Conditional operator (?:) takes three
arguments (ternary)

« Syntax for using the conditional operator:

expression1 ? expression2 : expression3

 This evaluates to an expression

 If expression1 is true, the result of the
conditional expression is expression2.
Otherwise, the result is expression3

C++ Programming: Program Design Including Data Structures 28

Example

 Example:
The statements
if(a>=b) max = a;
else max = b;

can be expressed, using the conditional
operator, as

max = (a>=b)? a : b;

C++ Programming: Program Design Including Data Structures

29

switch Structure

e Switch structure: alternate to if-else

¢ Syntax:
switch (expression)

{

case value 1: statements1
break;

case value 2: statements2

break;

case value n: statementsn
break;

default : statements

}

 Advice: Use if-else instead of switch

C++ Programming: Program Design Including Data Structures

30

Example

switch(grade) // grade is a variable of type char
{
case ‘A’: cout<<‘The grade is A”;
cout <<“II%;
break;
case ‘B’: cout<<“The grade is B”;
break;
case ‘C’: cout<<“The grade is C”;
break;

default : cout << “The grade is invalid”;

}

C++ Programming: Program Design Including Data Structures

31

Summary

e Control structures alter normal control flow

* Most common control structures are selection
and repetition

« Relational operators: ==, <, <=, > >=I=

* Logical expressions evaluate to 1 (true) or 0
(false)

* Logical operators: ! (not), && (and), || (or)

C++ Programming: Program Design Including Data Structures 32

Summary

« Two selection structures: one-way selection and two-
way selection

* The expression in an if or if...else structure is usually
a logical expression

» else is not a standalone statement in C++. Every else
has a related if

* A sequence of statements enclosed between braces,
{ and }, is called a compound statement or block of
statements

 More selection structures: conditional operator,
switch

C++ Programming: Program Design Including Data Structures 33

Repetition

C++ Programming: Program Design Including Data Structures

34

Why Is Repetition Needed?

* Repetition allows you to efficiently use
variables

« Can input, add, and average multiple
numbers using a limited number of variables

* For example, to add five numbers:

Declare a variable for each number, input the
numbers and add the variables together

Create a loop that reads a number into a variable
and adds it to a variable that contains the sum of
the numbers

C++ Programming: Program Design Including Data Structures

35

The while Loop

The general form of the while statement is:
while(expression)
statement

* while i1s a reserved word
« Statement can be simple or compound

* EXxpression acts as a decision maker and is a
logical expression

« Statement is called the body of the loop
* The parentheses are part of the syntax

C++ Programming: Program Design Including Data Structures 36

The while Loop (continued)

* EXxpression provides an entry condition

« Statement executes if the expression initially
evaluates to true

* Loop condition is then reevaluated

« Statement executes until the expression is no
longer true

C++ Programming: Program Design Including Data Structures 37

The while Loop (continued)

* |Infinite loop: continues to execute endlessly

« Can be avoided by including statements in
the loop body that assure exit condition will

eventually be false

C++ Programming: Program Design Including Data Structures 38

Example

* Print the nonnegative multiple of 5 up to 20
* PrintSomeNumbers.cpp

C++ Programming: Program Design Including Data Structures

39

Print multiple of 5 up to 20 example

int counter; //loop control variable
counter =0; //initialize counter

while(counter <= 20)

{

cout <<counter<<" "
counter = counter +5;

}

cout << endl;

C++ Programming: Program Design Including Data Structures

40

false

igure 5-1 while loop

Counter-Controlled while Loops

* |If you know exactly how many pieces of data
need to be read, the while loop becomes a

counter-controlled loop
* The syntax s:
counter = 0;
while(counter < N)

{

counter++;

C++ Programming: Program Design Including Data Structures

42

Example

« Compute the sum and average of a list of
iIntegers.

Ask the user first to enter the number of
iIntegers in the list. Then the user enters the
iIntegers in the list one by one.

« CountControl.cpp

C++ Programming: Program Design Including Data Structures

43

Compute the sum and average
example

int limit; /Ivariable to store the number of items in the list
int number; /Ivariable to store the number

int sum; /Ivariable to store the sum

int counter; //loop control variable

cout << "Enter the number of integers in the list: ";
cin >> limit;

sum = 0; counter =0;
cout<<"Enter the numbers:"<<end];
while (counter < limit) {

cin >> number;

sum = sum + number;

counter++;

C++ Programming: Program Design Including Data Structures

44

Compute the sum and average
example (continued)

cout << "The sum of the " << limit
<< " numbers =" << sum << endl;

if (counter !=0)
cout << "The average ="
<< static_cast<double>(sum) / counter << end];
else
cout << "No input." << endl;

» static_cast<double>(sum): converts sum from int to double

 We can use also sum+0.0 instead of static cast<double>(sum)

C++ Programming: Program Design Including Data Structures 45

Sentinel-Controlled while Loops

 Don’t know how many entries to be read
 Know that last entry is a special value, called sentinel

« Sentinel variable is tested in the condition and loop
ends when sentinel is encountered

* The syntax is:
cin>>variable;
while(variable != sentinel)

{

cin>> variable;

}

C++ Programming: Program Design Including Data Structures 46

Example

« Sentinel version of the previous example:
compute the sum and the average of a list of
number

« SentinelControl.cpp

C++ Programming: Program Design Including Data Structures 47

Sum and the average: sentinel
controlled example

int number; //variable to store the number
int sum = 0; //variable to store the sum
int count = 0; /Ivariable to store the total numbers read

cout << “ Enter numbers ending with “ << SENTINEL << end|;

cin >> number;
while (number != SENTINEL) {
sum = sum + number;

count++;
cin >> number;

}

/] rest as before

C++ Programming: Program Design Including Data Structures

48

The for-loop

« Typically used as an alternative of counter-
controlled while-loop

« The general form of the for statement is:

for(initial statement; loop condition; update statement)

statement

* The initial statement, loop condition, and
update statement are called for loop control
statements

C++ Programming: Program Design Including Data Structures

49

update
statement

false

Figure 5-2 for loop

The for Loop (continued)

* The for loop executes as follows:
initial statement executes

loop condition is evaluated
* If loop condition evaluates to true
» Execute for loop statement
« Execute update statement
» Repeat previous step until the loop
condition evaluates to false

e Initial statement initializes a variable

C++ Programming: Program Design Including Data Structures 51

The for Loop (continued)

» Use the initial statement to initialize your
control variable, as it is first to be executed
and is executed only once

* If the loop condition is initially false, the loop
body does not execute

* Use the update statement to change the
value of the loop control variable which
eventually sets the value of the loop condition
to false on termination

* The for loop executes indefinitely if the loop
conditionris-always-drere 52

Example

* Determine the sum of the first n positive
numbers

 SumNNumbers.cpp

C++ Programming: Program Design Including Data Structures

53

Sum of the first n positive numbers:
for loop example

int counter; //loop control variable
int sum; //variable to store the sum of numbers
int N; //variable to store the number of first positive integers to be added

cout << "Enter the number of positive integers to be added: “;
cin >> N;

sum = 0;
cout << endl;

for (counter = 1; counter <= N; counter++)
sum = sum + counter;

cout << "The sum of the first " << N << " positive integers is "
<< sum << endl;

C++ Programming: Program Design Including Data Structures 54

Nested Control Structures

« Suppose we want to create the following
pattern

*
**
* %%
**kk*%k

*kk*k*

* |n the first line, we want to print one star, in
the second line two stars and so on

C++ Programming: Program Design Including Data Structures

55

Nested Control Structures
(continued)

« Since five lines are to be printed, we start with
the following for statement

for(i=1;1<=5; i++)

 The value of i in the first iteration is 1, in the
second iteration it is 2, and so on

 Can use the value of i as limit condition in
another for loop nested within this loop to
control the number of starts in a line

C++ Programming: Program Design Including Data Structures 56

Nested Control Structures
(continued)

* The syntax s:
for(i=1;i<=95;i++)

{
for(j=1;j <=1 j++)
Cout<<u*u;
cout<<end!;
}

C++ Programming: Program Design Including Data Structures

57

Nested Control Structures
(continued)

* What pattern does the code produce if we replace the
first for statement with the following?
for (i=5;i>=1;i-)

« Thatis,
for(i=5;i>=1;i--)
{
for(j=1;j <=1 j++)
cout<<"*";
cout<<end!:

C++ Programming: Program Design Including Data Structures 58

Nested Control Structures
(continued)

e Answer:

*kkk*k
**k*%k%*
**k%
**

*

C++ Programming: Program Design Including Data Structures

59

Using Boolean Variables in Loops:
Testing Primality Example

* Anintegerif n >1 is prime if it has no (positive)
divisors other than 1 and n itself

« Given integer n, check if n is prime
if (n<=1) cout<<“not prime”;
else {
bool isPrime = true;
... look for evidence that n is not prime: a divisor of n
... If divisor found, set isPrime to false
if(isPrime==true)
cout<<“prime’;
else cout<<“not prime”;

C++ Programming: Program Design Including Data Structures 60

Using Boolean Variables in Loops:
Testing Primality Example (Continued)

if (n<=1) cout<<"not prime”;

else {
bool isPrime = true;
intd = 2;

while(d<= n-1) {
if(n%d ==0) isPrime =false;
d++;

}

if(isPrime) cout<<“prime”; else cout<<“not prime”;

C++ Programming: Program Design Including Data Structures

61

Using Boolean Variables in Loops:
Testing Primality Example (Continued)

Faster Test: stop looking for divisors when you find one

if (n<=1) cout<<“not prime”;

else {
bool isPrime = true;
intd = 2;

while(d<= n-1 && isPrime == ture) {

if(n%d ==0) isPrime =false;
d++;

}

if(isPrime) cout<<“prime”; else cout<<“not prime”;

C++ Programming: Program Design Including Data Structures

62

Break & Continue Statements

 break and continue alter the flow of control

 When the break statement executes in a
repetition structure, it forces control to exit the

structure

 The break statement can be used in while
and for loops

C++ Programming: Program Design Including Data Structures 63

Break & Continue Statements
(continued)

« The break statement is used for two
PUrpOSES:

To exit early from a loop
To skip the remainder of the switch structure

« After the break statement executes, the
program continues with the first statement
after the structure

 The use of a break statement in a loop can
eliminate the use of certain (flag) variables

C++ Programming: Program Design Including Data Structures 64

Break & Continue Statements
(continued)

 continue is used in while and for structures

 When executed in a loop

It skips remaining statements and proceeds
with the next iteration of the loop

C++ Programming: Program Design Including Data Structures

65

Break & Continue Statements
(continued)

 |n a while structure

Expression (loop-continue test) is evaluated
immediately after the continue statement

* |n a for structure, the update statement is
executed after the continue statement

Then the loop condition executes

C++ Programming: Program Design Including Data Structures 66

Examples (Continued)

* Primality test speedup using the break statement (form Programming
Assignment 2):

I/ to check if integer n is prime

bool isPrime = true;
for(int i=2;i*i<=n; i++)
if(Nn%i == 0)
{
isPrime =false;
break;

}

if (n==1) isPrime = false; // 1is not prime by convention
if(isPrime) cout <<n<<* is Prime.”;
else cout <<n<<* is not Prime.”;

C++ Programming: Program Design Including Data Structures

Summary

We studied two repetition structures: while,
for, ... more later on

While and for are reserved word

while: expression is the decision maker, and
the statement is the body of the loop

In a counter-controlled while loop,

Initialize counter before loop

Body must contain a statement that changes the
value of the counter variable

C++ Programming: Program Design Including Data Structures 68

Summary

* A sentinel-controlled while loop uses a
sentinel to control the while loop

« for loop: simplifies the writing of a count-
controlled while loop

« Nested control structures

« Break and continue statements

C++ Programming: Program Design Including Data Structures

69

Plan

* To study more interesting examples, need to
store and manipulate a list of data

* Need Arrays
* Plan:

An introduction to arrays
Control structures with arrays

C++ Programming: Program Design Including Data Structures

70

