EECE 231: Introduction to Programming, Sections 3, 4, and 12
Programming Style

from Kernighan and Pike’s “The Practice of Programming”

September 28, 2015

e Verbose Programmer. Start by writing comments.

— Describe what you will do step by step in separate comments. Then fill in between the
comments.

— Use line comments // instead of block comments /* */. Nested block comments can be the
source of headaches.

— The TODO comment is a very useful comment. You can use it to keep track of the tasks you
still need to do in code.

double x = 2x*y;
//T0OD0: lookup a function in the library that computes exponentiation and use it here.

— Make sure that content of the comments do not contradict the code you have written.

— Detailed comments will be considered in grading.

e Incremental compilation. Build and compile incrementaly. Whenever you enter a new statement
or a new block of code hit build and compile. This helps avoid wasting considerable time looking
for the causes of your linking and compilation errors.

e Use the debugger extensively to check that your code works fine and that the execution order
happens as you expect it. The debugger is your friend. More on this later.

e When you open a brace ‘{’, directly close it ‘}’ and do not wait to do that until you write the code
in between. Missing braces are very hard to track later on. The same applies to quotations " ",
parentheses (), and brackets [] . As shown in the example below, close the brace of the while
loop directly after opening it, then fill in the code.

while (a == 0) {
//Code goes here
}

e Early bracing. Use braces to include the code blocks of the if, else, while, and for constructs
even if they control only one statement.

if (a == 0) if (a==0) {
b = 10; b = 10;
b

This will protect you from adding more statements later without noticing the need to add braces.

if (a == 0) if (a == 0){
b = 10; b = 10;
= 10; // Wrong if you intend ¢ = 10; // Thanks to early bracing,
// this to be in the block. // you are protected.
}

(¢}
|

Indentation style. Remember to use white spacing to separate all your concepts and to always
indent to the right on the beginning of the body of control structures (if, while, for, ...).
for (i++;i<field[100] ;i=i+1); for (i++; i < field[100]; i=i+1)
if (a==0) return ’\0’; ;
if (a==0) {
return ’\0’;

}
Separate your computations. This way they are clearer and debuggable.
x += (y=(2*k < (n-m) 7?7 clk+1] : d[k--1)); if (2%k < n-m) {
y = clk+1];
} else
k—-;
y = d[k];
}
X=X +7y;

Use meaningful and generous names for your variables.

— Be accurate. The name isOctal better describes the operation than the name checkOctal
below since it also gives an indication of what the result should be if the ‘c’ was octal.
bool checkOctal(char c) { bool isOctal(char c) {

return ’0’ <= c && c <= ’7’; return ’0’ <= c && c <= ’7’;

} }

— Be consistent. Referring to the concept queue in the first set of declarations below is not
consistent. Once it is ‘Q’, once it is Queue, and then it is queue at the beginning of the variable
name. The other two sets of declarations are more consistent.

int noOfItemsInQ; int numItemsQueue; int qCardinality;
int front0fTheQueue; int frontQueue; int gFront;
int queueCapacity; int capacityQueue; int qCapacity;

Name your constants when they have a meaning (actually they almost always have a meaning) and
use the names in your code instead of hardcoding the numbers directly in the code.

enum { RED=1, GREEN=2,YELLOW=3};
const int MAXSIZE = 1024;

When working with text and you need to test against characters use the literal character constant
and not the ASCII number corresponding to the character.
if (¢ > 65 && c <= 90) if (¢ > A% && c <= ’Z’)

Use temporary variables wherever needed to store intermediate results. They come for free, and
when you do that, the debugger can help you better.

Avoid abusing precedence order and parenthesize. For example, the intent in the expression (x +
5) - (y * z) is clearer than that in the expression x + 5 - y * z.

Your best guides to a good code style:

— Writing good code is not different from writing good English. “The Elements of Style”, by
Strunk and White is the best short book on the subject.

— “The Elements of Programming Style”, by B. Kernighan and P. Plauger.
— “Writing Solid Code”, by Steve Maguire, Microsoft Press.

Best of luck!

