
C++ Programming:
Functions

Some material taken from: C++ Programming: Program Design Including Data Structures

C++ Programming: Program Design Including Data Structures 2

Objectives

• Learn about standard (predefined) functions
and discover how to use them in a program

• Learn how to write your own functions

• Learn about actual and formal parameters

• Use arrays as input to functions

C++ Programming: Program Design Including Data Structures 3

Functions

• A program is collection of modules called
functions

• Functions we have seen so far consist of the
main function in addition to library functions:
sqrt, pow, …

• Using functions allows for code reuse

− The same Selection-sort can be used to sort
different arrays when wraped as a function

C++ Programming: Program Design Including Data Structures 4

Functions (continued)

• Functions are like building blocks
• They allow complicated programs to be

divided into manageable pieces
• Some advantages of functions:

− A programmer can focus on just that part of
the program and construct it, debug it, and
perfect it

− Different people can work on different
functions simultaneously

− Can be used in more than one place in a
program or in different programs

C++ Programming: Program Design Including Data Structures 5

Predefined (Library) Functions

• Some of the predefined functions are:
− sqrt(x)
− pow(x,y)
− floor(x)

• Predefined functions are organized into separate
libraries, e.g.,
− Math functions are in <cmath> header
− I/O functions are in <iostream> header
− string functions are in <string> header

C++ Programming: Program Design Including Data Structures 6

The Power Function (pow)

• pow(x,y) calculates xy, pow(2,3) returns 8.0

• pow returns a value of the type double

• x and y are called the parameters (or
arguments) of the function pow

• Function pow has two parameters

C++ Programming: Program Design Including Data Structures 7

The sqrt and floor Functions

• The square root function sqrt(x)

− Calculates the non-negative square root of x,
for x >= 0.0

− sqrt(2.25) returns 1.5

− Type double and has only one parameter

C++ Programming: Program Design Including Data Structures 8

The sqrt and floor Functions
(continued)

• The floor function floor(x)

− Calculates largest whole number not greater
than x

− floor(48.79) returns 48.0

− Type double and has only one parameter

C++ Programming: Program Design Including Data Structures 10

User-Defined Functions

C++ Programming: Program Design Including Data Structures 11

Example: larger function

#include<iostream>
Using namespace std;
double larger(double,double); // function prototype or heading
int main()
{ ….

double a = 3.0;
double c = larger(a,7); // calling the function
….
return 0;

}
double larger(double x, double y) // body of the function
{

double max;
if(x>y) max = x;
else max = y;
return max;

}

C++ Programming: Program Design Including Data Structures 12

User-Defined Functions

• Two types of functions:
− Void functions: do not return a value
− Value-returning functions: return a value

• To create a new function:
− you need to declare it: prototype heading
− write the body of the function: definition

• Then you can use it: function call

C++ Programming: Program Design Including Data Structures 13

Value-Returning Functions

• Because the value returned by a value-
returning function is unique, we must:

− Save the value for further calculation

− Use the value in some calculation

• A value-returning function is used in an
assignment or in an output statement

C++ Programming: Program Design Including Data Structures 14

Function declaration

• Heading:

1. Name of the function

2. List of parameters: data type and name of each.
Called Formal parameters (or arguments)

3. Type of the function (void if it returns no value)

• Actual parameter (or arguments):

− variable or expression listed in a call to a function

− mapped by position to the formal parameters

C++ Programming: Program Design Including Data Structures 15

Function Syntax

• The syntax for function heading/declaration
functionReturnType functionName(formal parameter list);

• The syntax for function defintion:
functionReturnType functionName(formal parameter list)
{

statements
}

• Function return Type: type of the value
returned by the function

C++ Programming: Program Design Including Data Structures 16

Function Syntax (continued)

• The syntax of the formal parameter list is:

dataType identifier, dataType identifier, ...

• The syntax for a function call is:

functionName(actual parameter list)

• The syntax for the actual parameter list is:

expression or variable,expression or variable, ...

C++ Programming: Program Design Including Data Structures 17

Calling Functions

• To call a function:

− Use its name, with the actual parameters (if
any) in parentheses

− There is a one-to-one correspondence
between actual and formal parameters

• A function call in a program results in the
execution of the body of the called function

C++ Programming: Program Design Including Data Structures 18

The return Statement

• Once the function computes the value, the
function returns the value via the return
statement

• The syntax of the return statement is:
return expression;

• When a return statement executes
− Function immediately terminates
− Control goes back to the caller

• When a return statement executes in the
function main, the program terminates

C++ Programming: Program Design Including Data Structures 19

Example

• Largest of three numbers

• Larger3.cpp

C++ Programming: Program Design Including Data Structures 20

void Functions

• A void function does not return a value

• Syntax:

− Prototype/heading:

void functionName(formal parameter list);

− Function definition:

void functionName(actual parameter list) { … }

− Function call:

functionName(actual parameter list);

C++ Programming: Program Design Including Data Structures 21

Example

• Illustrative example of void functions
void print(int n); // prototype
void print(int n) {

for(int i=1; i<n; i++) cout<<“*”;
}
int main() { print(7); return 0;}

• More interesting examples soon

C++ Programming: Program Design Including Data Structures 22

Flow of Execution

• Execution always begins at

− The first statement in the function main no
matter where main is placed in the program

• Other functions are executed only when they
are called

C++ Programming: Program Design Including Data Structures 23

Flow of Execution (continued)

• A function call statement results in

− Transfer of control to the first statement in the
body of the called function

• After the last statement of the called function
is executed

− Control is passed back to the point
immediately following the function call

C++ Programming: Program Design Including Data Structures 24

Flow of Execution (continued)

• A value-returning function returns a value

• After executing the function

− The value that the function returns replaces
the function call statement

Passing arrays to functions:
Example
int larger(int,int);
int arrayMax(int B[],int n);
int main() {

int A[] = {7,5,2,31,12};
int max = arrayMax(A,5); // a reference to the array A is

// is passed to the function
// ArrayMax

return 0;
}
int arrayMax(int B[],int n) {

int max = B[0];
for(int i=1;i<n;i++) max = larger(max,B[i]);
return max;

}
int larger(int x, int y) {…}

C++ Programming: Program Design Including Data Structures 25

Passing arrays to functions

• Typical syntax of array formal argument:
returnType functionName(arrayType arrayName[], int arraySize, other arguments);

Typically you pass the array size also as an
argument. For instance, in the above example, we
need it in the loop.

• Unlike other arguments, arrays in C++ are passed
by reference:
− C++ does not make a copy of the whole array
− Modifying the array inside the function modifies the

original array

C++ Programming: Program Design Including Data Structures 26

Passing arrays to functions
(continued)
• Some functions do not modify the input array.

Example: the above arrayMax function

• Other functions do

Example: selection sort

C++ Programming: Program Design Including Data Structures 27

Selection Sort function

void selectionSort(int A[], int n) {
for(int i=0;i<n;i++) {

// find the the index minIndex of the smallest element of A[i...n-1]
int minIndex = i;
for(int j=i+1; j<n; j++)

if (A[minIndex] > A[j])
minIndex = j;

// swap A[i] and A[minIndex]
int temp = A[i];
A[i] = A[minIndex];
A[minIndex] = temp;

}
}

C++ Programming: Program Design Including Data Structures 28

C++ Programming: Program Design Including Data Structures 29

Summary

• Functions enable you to divide a program into
manageable tasks and allow for code reuse

• To define new functions: function prototype,
function definition

• Function are arguments in function definition
and heading are called formal parameters

• Expressions, variables, or constant values in
a function call are called actual parameters

C++ Programming: Program Design Including Data Structures 30

Summary

• A prototype is the function heading without
the body of the function; prototypes end with
the semicolon

• Prototypes are placed before every function
definition, including main

• A prototype is the function heading without
the body of the function; prototypes end with
the semicolon

C++ Programming: Program Design Including Data Structures 31

Summary

• In a call statement, specify only the actual
parameters, not their data types

• void functions do not return a value

• Unlike other parameters, arrays are passed
to functions by reference

• Modifying the array reference inside the
function modifies the original array

• In addition to array name, pass the array size
to the function

