
C++ Programming:
Basic Elements of C++

Some material taken from: C++ Programming: Program Design Including Data Structures

C++ Programming: Program Design Including Data Structures 2

Objectives

• Become familiar with the basic components of
a C++ program, including functions, special
symbols, and identifiers

• Explore simple data types

• Discover how to use arithmetic operators and
expressions

• Learn what an assignment statement is

C++ Programming: Program Design Including Data Structures 3

Objectives

• Discover how to input data into memory

• Examine ways to display output results

• Understand preprocessor directives

• Learn how to structure a program and use
comments

C++ Programming: Program Design Including Data Structures 4

Introduction

• Computer program: sequence of statements
designed to accomplish some task

• Programming: planning/creating a program

• Syntax: rules that specify which statements
are legal

• Programming language: a set of rules,
symbols, and special words

C++ Programming: Program Design Including Data Structures 5

C++ Programs

• A C++ program is a collection of one or more
subprograms, called functions

• A subprogram or a function is a sequence of
statements that, when activated (executed),
accomplishes something

• Every C++ program has a function called main

• The smallest individual unit of a program
written in any language is called a token

C++ Programming: Program Design Including Data Structures 6

Tokens

• Special symbols
• Keyword symbols
• Identifiers

C++ Programming: Program Design Including Data Structures 7

Special Symbols:

• +
• -
• *
• /
• .
• ;

• ?
• ,
• <=
• !=
• ==
• >=

Include:

C++ Programming: Program Design Including Data Structures 8

Keyword Symbols

• Reserved words, or keywords

• Include:
• int

• double

• char

• void

• const

• return

C++ Programming: Program Design Including Data Structures 9

Identifiers

• Used to name user-defined objects

• Consist of letters, digits, and the underscore
character (_)

• Must begin with a letter or underscore

• C++ is case sensitive

• Some identifiers are defined in user libraries,
example: cout and cin

C++ Programming: Program Design Including Data Structures 10

Legal and Illegal Identifiers

• The following are legal identifiers in C++:
− first
− sum
− secondNumber

C++ Programming: Program Design Including Data Structures 11

Data Types

• Data Type: set of values together with a set of
operations is called a data type

• C++ data can be classified into three
categories:

− Simple data type

− Structured data type

− Pointers (not covered in this class)

C++ Programming: Program Design Including Data Structures 12

Simple Data Types

• Three categories of simple data

− Integral: integers (numbers without a decimal)

− Floating-point: decimal numbers

Integral Data Types

C++ Programming: Program Design Including Data Structures 14

int Data Type

• Examples:
− -6728
− 0
− 78

• Positive integers do not have to have a + sign
in front of them

• No commas are used within an integer

C++ Programming: Program Design Including Data Structures 15

bool Data Type

• bool type

− Has two values, true and false

− Manipulate logical (Boolean) expressions

• true and false are called logical values

• bool, true, and false are reserved words

C++ Programming: Program Design Including Data Structures 16

char Data Type

• The smallest integral data type

• Used for characters: letters, digits, and special
symbols

• Each character is enclosed in single quotes

• Some of the values belonging to char data
type are: 'A', 'a', '0', '*', '+', '$', '&'

• A blank space is a character and is written ' ',
with a space left between the single quotes

C++ Programming: Program Design Including Data Structures 17

• C++ uses scientific notation to represent real
numbers (floating-point notation)

• double: represents any real number
− Range: -1.7E+308 to 1.7E+308
− Takes 8 bytes of memory

Floating-Point Data Types

C++ Programming: Program Design Including Data Structures 18

Arithmetic Operators

• C++ Operators
− + addition
− - subtraction
− * multiplication
− / division
− % remainder (mod operator), specific for integral

types
• Unary operator - has only one operand
• Binary Operator - has two operands
• Examples:

C++ Programming: Program Design Including Data Structures 19

Arithmetic Operators Examples

Result
• 2+5
• 5.0/2
• -3*2
• 21%6
• 6%7
• -7%6

C++ Programming: Program Design Including Data Structures 20

Order of Precedence

• All operations inside of () are evaluated first

• *, /, and % are at the same level of precedence and
are evaluated next

• + and – have the same level of precedence and are
evaluated last

• When operators are on the same level
− Performed from left to right

• Example: 2*3+7.0/4*3 means (2*3)+((7.0/4)*3)

• You are encouraged to use parenthesis

C++ Programming: Program Design Including Data Structures 21

Expressions

• If all operands are integers
− Expression is called an integral expression

• If all operands are floating-point
− Expression is called a floating-point

expression

• An integral expression yields integral result
• A floating-point expression yields a floating-

point result

C++ Programming: Program Design Including Data Structures 22

Mixed Expressions

• Mixed expression:

− Has operands of different data types

− Contains integers and floating-point

• Examples of mixed expressions:

− 2 + 3.5

− 6 / 4 + 3.9

− 5.4 * 2 – 13.6 + 18 / 2

C++ Programming: Program Design Including Data Structures 23

Evaluating Mixed Expressions

• If operator has same types of operands

− Evaluated according to the type of the operands

− Example: (12+1)/5 evaluates to 2 !

• If operator has both types of operands

− Integer is promoted to floating-point

− Operator is evaluated

− Result is floating-point

− Example: (12+1.0)/5 evaluates 2.6

C++ Programming: Program Design Including Data Structures 24

Memory Allocation

• Memory reservation

• Two types:

− Constant: stored in a memory location, its content can’t
change

− Variable: value stored in a memory location whose
content may change during execution

• The syntax to declare a constant is:
const dataType identifier = value;

• In C++, const is a reserved word

C++ Programming: Program Design Including Data Structures 25

Memory Allocation (continued)

• Examples:

const int n = 37;

const double x = 2.5;

• We must initialize a constant

C++ Programming: Program Design Including Data Structures 26

Allocating Memory (continued)

• The syntax to declare one variable:
dataType identifier;

• The syntax to declare more than one variable of the
same type:

dataType identifier1, indentifier2;

or equivalently

dataType identifier1;

dataType identifier2;

• Examples:

C++ Programming: Program Design Including Data Structures 27

Allocating Memory (continued)

• Examples:
int x;

double y, z;

int num = 1;

• We can initialize a variable at declaration

C++ Programming: Program Design Including Data Structures 28

Assignment Statement

• The assignment statement takes the form:
variable = expression;

• Expression is evaluated and its value is assigned to
the variable on the left side

• In C++ = is called the assignment operator
• A C++ statement such as:

x = x + 2;
evaluates whatever is in x, adds two to it, and assigns
the new value to the memory location x

• Examples:

C++ Programming: Program Design Including Data Structures 29

Assignment Statement Examples

value
const int y = 2;
int x=3;
double v;
int z = x+ y;
x = 1;
// y = 3; error!
v = x/y;
v = (x+0.0)/y;
v = v*y+x;

C++ Programming: Program Design Including Data Structures 30

Input

• Data must be loaded into main memory
before it can be manipulated

• Storing data in memory is a two-step process:

1. Instruct the computer to allocate memory

2. Include statements to put data into allocated
memory

C++ Programming: Program Design Including Data Structures 31

Input (Read) Statement

• cin is used with >> to gather input

cin>>variable>>variable. . .;

• The extraction operator is >>

• For example, if miles is a double variable

cin>>miles;

− Causes computer to get a value of type double

− Places it in the memory cell miles

C++ Programming: Program Design Including Data Structures 32

Input Statement (continued)

• Using more than one variable in cin allows
more than one value to be read at a time

• For example, if feet and inch are variables
of the type int a statement such as:

cin>>feet>>inch;

− Inputs two integers from the keyboard

− Places them in locations feet and inch
respectively

C++ Programming: Program Design Including Data Structures 33

Output

• The syntax of cout and << is:

cout<< expression or manipulator

<< expression or manipulator << ...;

• Called an output (cout) statement

• The << operator is called the insertion
operator or the stream insertion operator

• Expression evaluated and its value is printed
at the current cursor position on the screen

C++ Programming: Program Design Including Data Structures 34

Output (continued)

• Manipulator: alters output

• endl: the simplest manipulator

− Causes cursor to move to beginning of the
next line

C++ Programming: Program Design Including Data Structures 35

Output Example

• Output of the C++ statement cout<<a; is
meaningful if a has a value

− For example, the sequence of C++
statements,

int a = 45;

cout<<a;

produces an output of 45

C++ Programming: Program Design Including Data Structures 36

The New Line Character

• The new line character is ‘\n’

• Without this character the output is printed on
one line

• Tells the output to go to the next line

• When \n is encountered in a string
− Cursor is positioned at the beginning of next

line

• A \n may appear anywhere in the string

C++ Programming: Program Design Including Data Structures 37

Examples

• Without the new line character:
cout<<"Hello there.";
cout<<"My name is Goofy.";
− Would output:

Hello there.My name is Goofy.
• With the new line character:

cout<<"Hello there.\n";
cout<<"My name is Goofy.";
− Would output

Hello there.
My name is Goofy.

C++ Programming: Program Design Including Data Structures 38

Escape Sequences

• Examples:

C++ Programming: Program Design Including Data Structures 39

Examples

int a, b;
a = 65;
b = 78;
cout << 29+2<<endl;
cout<<“Hi\n”;
cout<< “a = ” << a << “ and\n b= ” << b;
cout<< “\n \t \“ :) \” ”;

C++ Programming: Program Design Including Data Structures 40

Program flow

C++ Programming: Program Design Including Data Structures 41

Libraries and Preprocessor
Directives
• C++ has a small number of operations
• Many functions and symbols needed to run a

C++ program are provided as collection of
libraries

• Every library has a name and is referred to by a
header file

• Preprocessor directives are commands
supplied to the preprocessor

• All preprocessor commands begin with #
• No semicolon at the end of these commands

C++ Programming: Program Design Including Data Structures 42

Preprocessor Directive Syntax

• Syntax to include a header file

#include <headerFileName>

• Causes the preprocessor to include the
header file iostream in the program

• The syntax is:

#include <iostream>

C++ Programming: Program Design Including Data Structures 43

Header Files

• The descriptions of the functions needed to
perform I/O are contained in iostream

• The syntax is:

− #include <iostream>

C++ Programming: Program Design Including Data Structures 45

Using cin and cout in a Program
and namespace
• cin and cout are declared in the header file

iostream, but within a namespace named std

• To use cin and cout in a program, use the
following two statements:

#include <iostream>

using namespace std;

C++ Programming: Program Design Including Data Structures 46

Other libraries

• Example: the string type, you need to access
its definition from the header file string

• Include the following preprocessor directive:
#include <iostream>
using namespace std;
#include <string>
//….

string str = “hello”;
cout<< str;

C++ Programming: Program Design Including Data Structures 47

Creating a C++ Program

• C++ program has two parts:

1. Preprocessor directives

2. The program

• Preprocessor directives and program
statements constitute C++ source code

• Source code must be saved in a file with the
file extension .cpp

C++ Programming: Program Design Including Data Structures 48

Creating a C++ Program
(continued)
• Compiler generates the object code

− Saved in a file with file extension .obj

• Executable code is produced and saved in a
file with the file extension .exe.

C++ Programming: Program Design Including Data Structures 49

Program Style and Form

• The Program Part

− Every C++ program has a function main

− Basic parts of function main are:
• The heading

• The body of the function

• The heading part has the following form

typeOfFunction main(argument list)

C++ Programming: Program Design Including Data Structures 50

Body and Syntax

• The body of the function is enclosed between
the braces { and }

• Has two types of statements
− Declaration statements
− Executable statements

• Errors in syntax are found in compilation
int x; //Line 1
int y //Line 2: syntax error
double z; //Line 3
y = w + x; //Line 4: syntax error

C++ Programming: Program Design Including Data Structures 51

Syntax

• Declaration Statements
int a, b, c;
double x, y;

− Variables can be declared anywhere in the
program, but they must be declared before they
can be used

• Executable Statements have three forms:
a = 4; //assignment statement
cin>>b; //input statement
cout<<a<<endl<<b<<endl; //output statement

C++ Programming: Program Design Including Data Structures 52

Use of Blanks
• Use of Blanks

− One or more blanks separate input numbers
− Blanks are also used to separate reserved words and

identifiers from each other and other symbols

• Blanks between identifiers in the second
statement are meaningless:
− int a,b,c;
− int a, b, c;

• In the statement: inta,b,c;
no blank between the t and a changes the reserved
word int and the identifier a into a new identifier, inta.

C++ Programming: Program Design Including Data Structures 53

Semicolons, Brackets, & Commas

• Commas separate items in a list

• C++ statements end with a semicolon

• { and } are not C++ statements

C++ Programming: Program Design Including Data Structures 54

Form and Style

• Consider two ways of declaring variables:
− Method 1

int feet, inch;

double x, y;

− Method 2
int a,b;double x,y;

• Both are correct, however, the second is hard
to read

C++ Programming: Program Design Including Data Structures 55

Documentation
• Comments can be used to document code

− Single line comments begin with // anywhere in
the line

− Multiple line comments are enclosed between /*
and */

• Name identifiers with meaningful names

• Handle Run-together-words using CAPS for the
beginning of each new word or an underscore before
the new word. Examples:
− int numOfStudents = 30;

− int num_of_courses = 5;

C++ Programming: Program Design Including Data Structures 56

Body of the Function

• The body of the function main has the
following form:

int main ()
{
declare variables
statements
return 0;
}

C++ Programming: Program Design Including Data Structures 57

Writing a Complete Program

• Begin the program with comments for
documentation

• Include header files

• Declare named constants, if any

• Write the definition of the function main

C++ Programming: Program Design Including Data Structures 58

Complete Examples

• Run Example 1
• Run Example 2
• Run Example 3

C++ Programming: Program Design Including Data Structures 59

Summary

• C++ program: collection of functions where
each program has a function called main

• Identifier consists of letters, digits, and
underscores, and begins with letter or
underscore

• The arithmetic operators in C++ are addition
(+), subtraction (-),multiplication (*), division (/),
and modulus (%)

• Arithmetic expressions are evaluated using the
precedence associativity rules

C++ Programming: Program Design Including Data Structures 60

Summary

• All operands in an integral expression are
integers and all operands in a floating-point
expression are decimal numbers

• Mixed expression: contains both integers and
decimal numbers

• A named constant is initialized when declared
• All variables must be declared before used

C++ Programming: Program Design Including Data Structures 61

Summary

• Use cin and stream extraction operator >> to
input from the standard input device

• Use cout and stream insertion operator << to
output to the standard output device

• Preprocessor commands are processed
before the program goes through the
compiler

• A file containing a C++ program usually ends
with the extension .cpp

