
C++ Programming:
Arrays

Some material taken from: C++ Programming: Program Design Including Data Structures

C++ Programming: Program Design Including Data Structures 2

Motivation

• Consider the following problems:
− Read a large list of numbers and print it in

reverse order
− Sort a large list of numbers

• Need to store a large list of number in
memory and manipulate it

• Arrays

C++ Programming: Program Design Including Data Structures 3

Objectives

• Learn about arrays
• Explore how to declare and manipulate data

into arrays
• Array reverse problem
• Sorting problem: Selection Sort

C++ Programming: Program Design Including Data Structures 4

Data Types

• A data type is called simple if variables of that
type can store only one value at a time

• A structured data type is one in which each
data item is a collection of other data items

C++ Programming: Program Design Including Data Structures 5

Arrays

• Array - a collection of a fixed number of
components wherein all of the components
have the same data type

• One-dimensional array - an array in which the
components are arranged in a list form

• The general form of declaring a one-
dimensional array is:

dataType arrayName[intExp];

where intExp is any expression that evaluates to a
constant positive integer

C++ Programming: Program Design Including Data Structures 6

Declaring an array

• The statement
int num[5];

declares an array num of 5 components of the type
int

• The components are num[0], num[1], num[2], num[3],
and num[4]

C++ Programming: Program Design Including Data Structures 7

Accessing Array Components

• The general form (syntax) of accessing an
array component is:

arrayName[indexExp]

where indexExp, called index, is any expression
whose value is a nonnegative integer

• Index value specifies the position of the
component in the array

• The [] operator is called the array subscripting
operator

• The array index always starts at 0

C++ Programming: Program Design Including Data Structures 8

Processing One-Dimensional Arrays
• Some basic operations performed on a one-

dimensional array are:
− Initialize
− Input data
− Output data stored in an array
− Find the largest and/or smallest element

• Each operation requires ability to step through
the elements of the array

• Easily accomplished by a loop

C++ Programming: Program Design Including Data Structures 9

Accessing Array Components
(continued)

• Consider the declaration

int list[100]; //list is an array of the size 100
int i;

• This for loop steps-through each element of
the array list starting at the first element

for(i = 0; i < 100; i++) //Line 1
process list[i] //Line 2

C++ Programming: Program Design Including Data Structures 10

Accessing Array Components
(continued)

• If processing list requires inputting data into
list
− the statement in Line 2 takes the from of an

input statement, such as the cin statement

for(i = 0; i < 100; i++) //Line 1

cin>>list[i];

C++ Programming: Program Design Including Data Structures 11

Array Index Out of Bounds
• If we have the statements:

double num[10];

int i;

• The component num[i] is a valid index if i = 0, 1, 2, 3, 4, 5, 6, 7,
8, or 9

• The index of an array is in bounds if the index >=0 and the
index <= arraySize-1

• Otherwise, it is out of bounds

• There is no automatic guard against indices that are out of
bounds

C++ Programming: Program Design Including Data Structures 12

Array Initialization

• As with simple variables
− Arrays can be initialized while they are being declared

• When initializing arrays while declaring them
− Not necessary to specify the size of the array

• Size of array is determined by the number of initial values
in the braces

• For example:
double sales[] = {12.25, 32.50, 16.90, 23, 45.68};

or
double sales[5] = {12.25, 32.50, 16.90, 23, 45.68};

C++ Programming: Program Design Including Data Structures 13

Restrictions on Array Processing

• Assignment does not work with arrays
− If x and y are two arrays of the same type and size

then the following statement is illegal:
int x[100], y[100];
y = x; // C++ illegal

• We will see later that matlab allows it
• In order to copy one array into another array we must

copy component-wise:
for(j = 0; j < 25; j++)

y[j] = x[j];

C++ Programming: Program Design Including Data Structures 14

Restrictions on Array Processing
(continued)

• Comparison of arrays, reading data into an
array and printing the contents of an array
must be done component-wise

cin >>x; //not supported
cout <<y; //not supported

• C++ does not allow aggregate operations on
an array

• An aggregate operation on an array is any
operation that manipulates the entire array as a
single unit

C++ Programming: Program Design Including Data Structures 15

Summary

• An array is a structured data type with a fixed
number of components
− Every component is of the same type
− Components are accessed using their relative

positions in the array
• Elements of a one-dimensional array are

arranged in the form of a list
• An array index can be any expression that

evaluates to a non-negative integer
• The value of the index must always be less

than the size of the array

Examples

• Reverse input
• Array Max
• Selection-Sort

C++ Programming: Program Design Including Data Structures 16

Example I: print in reverse

• Read a large list of numbers and print it in
reverse order

C++ Programming: Program Design Including Data Structures 17

C++ Programming: Program Design Including Data Structures 18

Example I: print in reverse
(Continued)

int A[1000]; // declare an array
int n;
cout<<"Enter number of items (at most 1000):";
cin>>n;
cout << "Enter " << n<< " numbers." << endl;
int i = 0;
for (i=0; i < n; i++)

cin >> A[i];
cout << "The numbers in reverse order are: ";
for (i = n-1; i >= 0; i--)

cout << A[i] << " ";

Example II: find max in array

int A[10] = {14,2,97,10,3,5,-19,56,89,-43};

Find and print largest element in A

C++ Programming: Program Design Including Data Structures 19

Example II: find max in array
(continued)

int A[10] = {14,2,97,10,3,5,-19,56,89,-43};
int max = A[0];
for (int i = 1; i <10; i ++)

if(max < A[i])
max = A[i];

cout << "The largest is "<<max<<endl;

C++ Programming: Program Design Including Data Structures 20

Example III: Sorting

• Sorting problem
• Selection Sort

C++ Programming: Program Design Including Data Structures 21

Sorting problem

• Input: sequence of n numbers
A[0], A[1],· · ·, A[n-1] stored in a size-n array A

• Output: permutation of the elements of A such A[0] ≤
A[1] ≤ · · · ≤A[n-1]

• Example:
− Input: 8 2 4 9 3 6
− Output: 2 3 4 6 8 9

• There are many sorting algorithms
• Will study: Selection-Sort

C++ Programming: Program Design Including Data Structures 22

Idea of selection-Sort

To sort an array A[0….n]:
1. find the index minIndex of smallest element in

A[0…n]

C++ Programming: Program Design Including Data Structures 23

Idea of Selection-Sort (continued)

To sort an array A[0….n]:
1. find the index minIndex of smallest element in A[0…n]
2. exchange A[minIndex] (swap it) with A[0], hence now the

number stored in A[0] is in its correct position in the desired
sorted order

3. find the index minIndex of the smallest element in A[1… n]
4. exchange A[minIndex] with A[1] , hence the number stored in

A[1] is in its correct position in the desired sorted order.
5. find the index minIndex of the smallest element in A[2 … n]
6. exchange A[minIndex] with A[2]
7. and so on until A[0… n] is sorted

C++ Programming: Program Design Including Data Structures 24

Try it on an example

5 2 4 6 1 3

C++ Programming: Program Design Including Data Structures 25

Pseudocode of Selection-Sort

• Pseudocode: Syntax-independent description of the algorithm
• To sort A[0...n-1]:

for i=0...n-1,
1. find the index minIndex of the smallest element of

A[i...n-1] as follows:
minIndex = i;
for j=i+1…n-1,

if A[minIndex] > A[j]
minIndex = j;

2.swap A[i] and A[minIndex]

• Nested loops

C++ Programming: Program Design Including Data Structures 26

Swapping

• Say that we want to exchange (i.e., swap)
A[7] and A[2]:

int temp= A[7]; // temporary variable
A[7] = A[2];
A[2] = temp;

C++ Programming: Program Design Including Data Structures 27

Selection-Sort Code

for(i=0;i<n;i++) {
// find the the index minIndex of the smallest element of A[i...n-1]

int minIndex = i;
for(int j=i+1; j<n; j++)

if (A[minIndex] > A[j])
minIndex = j;

// swap A[i] and A[minIndex]
int temp = A[i];
A[i] = A[minIndex];
A[minIndex] = temp;

}

C++ Programming: Program Design Including Data Structures 28

