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5.1 Introduction 

•  Uncertainty analysis provides a methodical approach 
to estimating  the accuracy of results. 

•  In  other words we can estimate the “±what” in a 
planned test. 

•  Errors causes a difference from the true value, but 
since we don’t know the true value and hence we 
estimate a range of probable error. This estimate is 
called uncertainty. 

•  Uncertainty is a property of the result. 
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5.1 Introduction 

•  The uncertainty describes an interval about the 
measured value within which we suspect that the true 
value must fall with a stated probability. 

•  What we want to do is quantify, on average, how 
closely the measured value agrees with some known 
true value and base our interpretation of subsequent 
measured results on that information. 

•  Uncertainty quantifies the quality of the result. 
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5.2 Measurement Errors 
•  An error is the difference between a measured value and 

the true value.  An error is a property of a measurement. 
•  Errors are introduced from various elements: 

–  The instrument, 
–  The data set finite statistics, 
–  The approach used. 

•  Given that we can not know the true value, we can 
estimate a range of probable error. 

•  We call this estimate the uncertainty. 
•  Uncertainty analysis is the process of identifying, 

quantifying, and combining these errors. 
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5.2 Measurement Errors 

•  An error is said to be systematic when in the course of 
measuring the same value of a given quantity under 
the same conditions, it remains constant in absolute 
value and sign, or varies according to a definite law 
when measurement conditions change. 

•  Random errors are those that remain after eliminating 
the causes of systematic errors. They bring about a 
distribution of measured values about the sample 
mean. 
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Systematic & Random Errors 
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•  The systematic errors 
will shift the sample 
mean from the true 
mean of the measured 
variable by a fixed 
amount. 

•  The random errors 
bring about a 
distribution of 
measured values 
about the sample 
mean. 
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Systematic Errors 

•  Systematic errors yield what is known as measurement 
bias. 

•  Systematic errors remains constant in repeated 
measurements under fixed operating conditions. 

•  Being a fixed value, the systematic error cannot be 
directly discerned by statistical means alone.  

•  Sometimes it is even difficult to recognize its presence. 
•  Systematic errors are estimated by comparison. 
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Systematic Errors 

•  The presence (not correction at this point) of systematic 
errors can therefore be discovered by: 
– Measuring the same quantity with 2 different devices, 
–   Using two different methods, 
–   Using two different operators, 
– Changing the measurement conditions and observing 

their influence on results (statistical analysis). 
•  The correction of systematic error can by achieved by 

calibrating to a known standard. 



- + 

Random Errors 

•  Random error, also called precision error, is affected 
by the repeatability and resolution of the 
measurement system components. 

•  Because of the varying nature of the random errors, 
exact values cannot be given, but probable estimates 
of the error can be made through statistical analyses. 
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Random Errors 
•  Random errors are characterized by the following: 

–  Positive and negative random errors with the same absolute 
values have the same occurrence probability. 

–  The probability of occurrence of a random error decreases as 
its absolute value increases. 
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Random Errors 

•  In the absence of systematic errors, the best estimate of 
the actual value of a measurand is obtained by taking n 
measurements and averaging the results: 

n
xxxx n

n
+++

=
21ˆ

•  When n is infinite, (1.3) yields the true value for x. 
•  However, when n is finite, each experiment that yields a 

group of x’s gives a different average.   
•  The random uncertainty at a defined confidence level is 

defined by the interval 
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5.3 Design Stage Uncertainty  
•  Analysis done prior to measurement. 
•  It is useful for selecting instruments, measurement 

techniques, and estimating the likely uncertainty to 
exist in the measured data. 

•  Data at this level is obtained from catalogues. 
•  It is probably difficult in this stage to distinguish 

between systematic and random errors. 
•  The goal of the design stage is to estimate the 

magnitude of uncertainty in the measured value that 
would result from a measurement. 
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5.3 Design Stage Uncertainty  

•  The zero-order uncertainty (u0) of an instrument 
reflects our ability to resolve the information provided 
by the instrument. 

•  At zero-order uncertainty we assume the variation 
expected in the measured values will be that of the 
instrument resolution alone and all other aspects of 
the measurement are perfectly controlled. 

•  u0 is an estimate of the expected random uncertainty 
caused by the data scatter due to reading the 
instrument. 
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Zero-order Uncertainty 

•  As a rule of thumb, assign a numerical value to u0 of 
one half of the instrument resolution with a 
probability of 95%. 
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u0 = ±
1
2

resolution (95%)

•  At 95%, we assume that only one measured value in 
20 will have a value outside of u0. 
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Instrument Uncertainty 

•  The second piece of information from a manufacturer 
is the instrument uncertainty uc 

•  Essentially, uc is an estimate of the systematic error 
for the instrument. 

•  Sometimes the instrument error will be stated in parts, 
each part due to some contributing factor. 

•  We combine these errors via the root-sum-squares 
(RSS) method. 
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Root Sum Square (RSS) method 

•  We will refer to each individual error as an elemental 
error. 

•  For example the sensitivity error and the linearity error 
of a transducer are two elemental errors.  

•  Consider a measurement of x subject to k elemental 
errors e1,e2,…en: 

 

ux = ± e1
2 ,e2

2 ,,eK
2

   = ± ek
2

k=1

K

∑
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Different type 
of instrument 
errors: 
- Hysteresis 
- Linearity 
- Sensitivity 
- Zero Shift 
- Repeatability 
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RSS method 

•  In calculating RSS be careful to be consistent with the 
units. 

•  Furthermore, each error should be estimated at the 
same probability level. A general rule is to use 95%. 

•  If no probability level is provided on the datasheet, a 
95% level can be assumed. 
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5.3 Design Stage Uncertainty 
•  The design stage uncertainty is then obtained by 

combining the instrument uncertainty with the zero-
order uncertainty: 
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ud = u0
2 + uc

2

•  The design stage uncertainty is used as a guide for 
selecting equipment and is NOT the final estimate of 
the total uncertainty in a measurement system. 

•  If additional information is known at this stage then 
should be included in the above equation. 
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5.3 Design Stage Uncertainty 

MECH 430 Sensor characteristics Slide 21 



- + 

Example 5.1 

•  Given: a force measuring instrument is described by 
the catalogue data below. 

•  Estimate:  the uncertainties attributable to this 
instrument and the instrument  design stage 
uncertainty. 
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Resolution 0.25N 
Range 0 to 100N 
Linearity within 0.2 N over range 
Hysteresis within 0.3N over range 
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Example 5.1 
•  Solution: first find elemental errors of linearity and 

hysteresis 
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ulinearity = 0.2N
uhysteresis = 0.3N

•  Next combine using RSS to find uc: 

uc = ± 0.22 + 0.32 = ±0.36N   (95%)

•  The instrument resolution is 0.25N so u0 = ±0.125N 

•  Finally the design-stage uncertainty is: 

ud = ± u0
2 + uc

2 = ± 0.362 + 0.1252 = ±0.38N   (95%)
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Example 5.2 

•  Given: a voltmeter is to be used to measure the output 
of a pressure transducer. 

•  Pressure transducer (3psi expected nominal pressure) 
–  Range: ±5psi 
–  Sensitivity: 1V/psi 
–  Input power: 10VDC ±1% 
–  Output: ±5V 
–  Linearity: within 2.5mV/psi over range 
–  Sensitivity: within 2mV/psi over range 
–  Resolution: negligible 
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Example 5.2 

•  Voltmeter 
–  Resolution: 10µV 
–  Accuracy: within 0.001% reading 

•  Find: 
–  uc for each device 
–  ud for the measurement 
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Example 5.2 

•  Solution: 
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The design stage uncertainty for the voltmeter is: 

ud( )E = ± u0( )E
2
+ uc( )E

2
= ±30.4µV   (95%)

u0( )E = ±5µV    (95%)

uc( )E = ± 3V × 0.00001( ) = ±30µV    (95%)
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Example 5.2 

•  Solution: 
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The design stage uncertainty for the pressure transducer is: 

ud( )E = ± u0( )E
2
+ uc( )E

2
= ±9.61mV   (95%)

u0( )P = 0

uc( )P = ± 2.5mV / psi × 3psi( )2
+ 2mV / psi × 3psi( )2

= ±9.61mV    (95%)
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Example 5.2 

•  Solution: 
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Finally, the design stage uncertainty for the entire 
system is: 

ud = ± ud( )E
2
+ ud( )P

2
= ± 0.030mV( )2

+ 9.61mV( )2
= ±9.61mV   (95%)

Using the sensitivity of 1V/psi, the uncertainty in psi is: 

ud = ±0.0096psi  (95%)
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5.4 Error Sources 

•  Design-stage uncertainty does not address all possible 
errors. 

•  If we consider the measurement process to consist of 3 
steps, and each has an uncertainty associated with it: 
–  calibration error, 
–  data-acquisition error, 
–  data reduction error. 
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5.4 Error Sources 
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Calibration errors        DAQ errors        

Data reduction errors        
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5.6 Error Propagation 

•  Very often results are obtained through a functional 
relationship with measured values. 

•  For example the measurement of flow rate using time 
and volume. Q = f( t, V) 

•  How do uncertainties in either quantity contribute to 
uncertainty in flow rate? 

•  Is the uncertainty in Q more sensitive to uncertainty 
in t or v? 

•  How are errors propagated to a calculated result? 
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5.6 Error Propagation 

•  The true value of y falls within the interval 
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y ± δy = f (x ± tSx )
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5.6 Error Propagation 

•  Expanding using a Taylor series: 
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y ± δy = f (x ± tSx )

 
y ± δy = f (x ) ± dy

dx
"
#$

%
&' x= x

tSx +
1
2

d 2y
dx2

"

#$
%

&' x= x
tSx( )2 +

(

)
*
*

+

,
-
-

•  If       is small and if we neglect higher order terms: tSx

δy ≈
dy
dx

#
$%

&
'( x= x

tSx
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5.6 Error Propagation 

•  From above the uncertainty for the dependent variable 
is related to the uncertainty in the independent 
variable by: 
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uy =
dy
dx

!
"#

$
%& x= x

ux
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Multiple Variables 
•  For multiple variables with R = f1(x1, x2, …, xL) the 

best estimate for the true mean R’ is: 
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R ' = R ± uR    (P%)

 R = f1(x1, x2 ,, xL )

uR = ± θiuxi( )2

i=1

L

∑#
$
%

&

'
(

1/2

   (P%)

θi =
∂R
∂xix=x

    i = 1,2,...,L
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Example 5.3 

•  Given: 
–  A displacement sensor has a calibration curve y = KE, 
–  E = 5V, 
–  K = 10.10 mm/V 
–  uK = ±0.10 mm/V (95% confidence) 
–  uE = ±0.01 V (95% confidence) 

•  Find: 
–  The uncertainty in displacement 
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Example 5.3 

•  Solution 
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y = f (E,K ) uy = f (uE ,uK )

•  The uncertainty is found as: 

uy = ± θEuE( )2 + θKuK( )2"
#

$
%
1/2

θE =
∂y
∂E

= K

θK =
∂y
∂K

= E

•  Therefore: 

uy = ± K(0.01)( )2
+ E(0.1)( )2!

"
#
$

1/2
= ±0.51mm  (95%)
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Sequential Perturbation 

•  It might be difficult to find the partial derivatives in 
the previous method. 

•  We then resort to something known as sequential 
perturbation. 

•  This method is based on using a finite difference 
method to approximate the derivatives. 
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Sequential Perturbation 
•  Start by finding an operating point Ro= f(x1, x2,…, xL) 
•  Next, increase the independent variables by their 

uncertainties to find  
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Ri
+

R1
+ = f (x1 + ux1 , x2 ,..., xL ),

R2
+ = f (x1, x2 + ux2 ,..., xL ),...

RL
+ = f (x1, x2 ,..., xL + uxL )

•  Do the same to find  
•  Calculate the differences: 

Ri
−

δRi
+ = Ri

+ − Ro
δRi

− = Ri
− − Ro
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Sequential Perturbation 

•  Finally find the approximate uncertainty contribution 
of each variable. 
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•  The uncertainty is then calculated as: 

uR = ± δRi( )2

i=1

L

∑#
$
%

&

'
(

1/2

  (P%)

δRi =
δRi

+ − δRi
−

2
≈θiui



- + 

Example 5.3 (continued) 

•  Alternatively we can use sequential perturbation with 
Ro = 50.5 mm 
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•  The uncertainty is found as: 

uy = ± 0.10( )2 + 0.5( )2!
"

#
$
1/2
= ±0.51mm

•  Therefore the displacement is: 
y ' = 50.50 ± 0.51mm  (95%)

i xi 

1 E 50.60 50.40 0.1 -0.1 0.1 
2 K 51.00 50.00 0.5 -0.5 0.5 

Ri
+ Ri

− δRi
+ δRi

− δRi
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Principle of equal effects 

•  If you have the total uncertainty and want to find each 
individual uncertainty, we can use the principal of 
equal effects.   

•  This principal states that each source of uncertainty 
∆ui contributes an equal amount to the total 
uncertainty ∆R. 

( )i
i uRn

Ru
∂∂

Δ
=Δ

/
(1) 
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Example 

•  A dynamometer is used to measure 
the average power output on a shaft. 

t
RFLP

12550
2
×

=
π

Time of run (s) 

Number of revolutions of 
the shaft during t seconds 

Force at the end of 
the torque arm (lbf) 

Length of 
torque arm (ft) 

Average power (hp) K 
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Example 
•  Given:  

– For a given run we have the following measurements 
with their associated errors 

– Find the overall uncertainty: 

s 55.000.60
in 05.063.15
lbf 04.012.10

rev 11202

±=

±=

±=

±=

t
L
F
R
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Example 
•  Solution:  

–  Find the partial differentials: 

hp/s 051.0

hp/in 193.0

hp/rev 0251.0

hp/lbf 298.0

2 −==
∂

∂

==
∂

∂

==
∂

∂

==
∂

∂

t
KFLR

t
P

t
KFR

L
P

t
KFL

R
P

t
KLR

F
P

F = 10.12 ± 0.04 lbf
R = 1202 ±1 rev
L = 15.63 ± 0.05 in
t = 60.00 ± 0.55 s
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Example 
•  The overall uncertainty is found as: 

ΔRRSS = 0.04 × 0.298( )2 + 1× 0.00251( )2 + 0.05 × 0.193( )2 + 0.55 × 0.05( )2

hp  029.0=Δ RSSR

•  The power is calculated as: 

hp  016.3==
t

KFLRP

•  If we wish to measure P to within 0.5% uncertainty, 
what are the errors associated with each individual 
measurement? 
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Example 

ΔF = ΔP
n ∂P / ∂F( )

=
0.005 × 3.016

4 0.298( )
= 0.013 lbf

ΔR = ΔP
n ∂P / ∂R( )

=
0.005 × 3.016

4 0.00251( )
= 1.5 rev

ΔL = ΔP
n ∂P / ∂F( )

=
0.005 × 3.016

4 0.193( )
= 0.019 in

Δt = ΔP
n ∂P / ∂F( )

=
0.005 × 3.016

4 0.05( )
= 0.075 s

•  Using the principle of equal effects: 
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5.7 Advanced Stage Uncertainty 

•  Higher order uncertainty considers the 
controllability of test operating 
conditions and the variability of all 
measured variables. 

•  For example, at a first order level, the 
effect of time as an extraneous variable 
could be considered. 
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uN = uc
2 + ( ui

2

i=1

N −1

∑ )
#

$
%
%

&

'
(
(

1/2

   (P%)
u0 = ±

1
2

   resolution

u1 = ±t J −1( ),95ST
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Example 5-4 

•  Examine a dial oven thermometer and assess the zero 
and first order uncertainties if we have J 
measurements 
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u0 = ±
1
2

   resolution

u1 = ±t J −1( ),95ST
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Example 

•  A stopwatch is to be used to estimate the time 
between the start and end of an event. Event duration 
might range from several seconds to 10 minutes. 
Estimate the probable uncertainty in a time estimate 
using a stopwatch that claims an accuracy of 1 minute 
per month and a resolution of 0.01 seconds.  
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Example 

•  Zero stage uncertainty 
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u0 = ±0.01/ 2s

uc = ±
60s

1(30)(24)(60)(60)s
T

T =10s

⇒ ud = ± u0
2 +uc

2 = ± 0.0052 + 10 60
1(30)(24)(60)(60)

"

#
$

%

&
'

2

= ±0.005s

T =10min = 600s

⇒ ud = ± u0
2 +uc

2 = ± 0.0052 + 10(600) 60
1(30)(24)(60)(60)

"

#
$

%

&
'

2

= ±0.015s
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Example 

•  Now assume that the operator takes some time to detect the 
start and end of the event. Assume this uncertainty is quantified 
as 150ms with 95% probability. 
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u0 = ±0.01/ 2s

uc = ±
60s

1(30)(24)(60)(60)s
T

u1 = ±0.150s

t =10s

⇒ uN = ± u1
2 +uc

2 = ± 0.152 + 10 60
1(30)(24)(60)(60)

"

#
$

%

&
'

2

= ±0.15s

t =10min = 600s

⇒ uN = ± u1
2 +uc

2 = ± 0.152 + 10(600) 60
1(30)(24)(60)(60)

"

#
$

%

&
'

2

= ±0.151s
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Example 

•  First stage uncertainty is more important (bigger) than the 
instrument uncertainty. For what duration is this true? 
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uc = ±
60s

1(30)(24)(60)(60)s
T

u1 = ±0.150s

T = ???

⇒ uN = ± u1
2 +uc

2 = ± 0.152 + T 60
1(30)(24)(60)(60)

"

#
$

%

&
'

2

T 60
1(30)(24)(60)(60)

> 0.15⇒ t >1.8hrs
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5.8 Multiple Measurement Uncertainty 

•  This is applicable if we are able to obtain multiple 
measurement for each variable of our experiment. 

•  The propagation of random uncertainty: 
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 P = (P1
2 + P2

2 +PK
2 )1/2

•  The propagation of elemental systematic error is: 

standard random 
uncertainty of each 

measurement 

 B = (B1
2 + B2

2 +BK
2 )1/2

systematic uncertainty 
of each measurement 
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5.8 Multiple Measurement Uncertainty 

•  The total uncertainty is then: 
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ux = ± B2 + tv,95P( )2( )1/2
  (95%)

v =
Pk
2

k=1

K

∑
"

#$
%

&'

2

Pk
4 / vk( )

k=1

K

∑

•  v is found via the Welch-Satterthwaite formula: 
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5.8 Multiple Measurement Uncertainty 
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Example 5.12 

•  Measuring stress in a loaded beam we observe three 
sources of uncertainty as follows: 
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•  If the mean value of stress is 223.4N/cm2 

•  Determine the best estimate of stress at 95% confidence 

B1 = 1.0N/cm2 B2 = 2.1N/cm2 B3 = 0 N/cm2 
P1 = 4.6N/cm2 P2 = 10.3N/cm2 P3 = 1.2N/cm2 
v1 = 14 v2 = 37 v3 = 8 
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Example 5.12 
•  The random uncertainty is: 
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 P = (P1
2 + P2

2 +PK
2 )1/2 = 11.3N / cm2

•  The systematic uncertainty is: 

 B = (B1
2 + B2

2 +BK
2 )1/2 = 2.3N / cm2

•  The degree of freedom is: 

v =
Pk
2

k=1

3

∑
"

#$
%

&'

2

Pk
4 / vk( )

k=1

3

∑
≈ 49
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Example 5.12 

•  t49,95 = 2 and the uncertainty estimate is: 

MECH 430 Slide 59 

•  The best estimate of a result is: 

uσ = ±[B
2 + tv,95P( )2 ]1/2 = ±[2.32 + 2 ×11.3( )2 ]1/2 = ±22.7N / cm2

σ ' = 223.4 ± 22.7N / cm2   (95%)
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Propagation of Uncertainty  
•  If we have a function f(x1, x2,…,xn), the true value can 

be expressed as: 
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R ' = R ± uR    (P%)

 R = f1 x1, x2 ,xL( )

uR = ± BR
2 + tv,95PR( )2( )1/2

  (95%)

BR = θiBxi
"# $%

2

i=1

L

∑
'

()
*

+,

1/2

PR = θiPxi"# $%
2

i=1

L

∑
'

()
*

+,

1/2

v =
θiPxi

2

k=1

K

∑
#

$%
&

'(

2

θiPxi( )4 / vxi( )
k=1

K

∑
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Example 5.13 

•  Given: 
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ρ =
P
RT

•  For the pressure measurement: 
uc = 1% of the reading 
Np = 20 measurements 
 
Sp = 167.21 psfa 
 

p = 2253.91psfa
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Example 5.13 

MECH 430 Slide 62 

•  For the temperature measurement: 
uc = 0.6 oR 
NT = 10 measurements 
 
ST = 3.0 oR 
 

T = 560.4 oR

•  The gas constant R = 54.7 ft-lb/lbm-oR 
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Example 5.13 

MECH 430 Slide 63 

•  Find: 
•  The best estimate of the density 
 

•  Assume: 
•  Ideal gas  
•  No uncertainty in the gas constant R 
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Example 5.13 
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•  Solution: 
ρ =

p
RT

= 0.074lbm / ft 3

•  Important: 
•  Since no information is given in terms of sources 

of error we will only assume errors from the data-
acquisition error source group; namely: 
•  instrument error 
•  temporal variation 
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Example 5.13 
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•  The instrument error for pressure is: 

B1( )p = 0.01 2253.91( ) = 22.5psfa P1( )p = 0

•  The temporal variation causes: 
P2( )p = Sp =

Sp
N
=

167.21psfa
20

= 37.4 psfa     ν p = 19 B2( )p = 0

•  The instrument error for temperature is: 

•  The temporal variation causes: 
B1( )T = 0.6 oR P1( )T = 0

P2( )T = ST =
ST
N
=

3.0o R
10

= 0.9o R     ν p = 9 B2( )T = 0
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Example 5.13 

MECH 430 Slide 66 

•  We can now combine the find the uncertainties 

B( )p = 22.5( )2 + 0( )2!
"

#
$
1/2
= 22.5psfa

•  Similarly: 

P( )p = 0( )2 + 37.4( )2 +!
"

#
$
1/2
= 37.4 psfa

B( )T = 0.6
o R

P( )T = 0.9
o R
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Example 5.13 
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•  Now we do propagation of systematic and random 
uncertainties to estimate the uncertainties in density: 

•  Similarly: 

Pρ =
∂ρ
∂T

PT
#
$%

&
'(

2

+
∂ρ
∂p

Pp
#

$%
&

'(

2)

*
+
+

,

-
.
.
= 0.0012lbm / ft 3

Bρ =
∂ρ
∂T

BT
#
$%

&
'(

2

+
∂ρ
∂p

Bp
#

$%
&

'(

2)

*
+
+

,

-
.
.
= 0.0007lbm / ft 3

1/2 

1/2 
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•  Finally we have to find the equivalent # DoF 

•  And the total uncertainty becomes: 

v =
θiPxi

2

k=1

K

∑
#

$%
&

'(

2

θiPxi( )4 / vxi( )
k=1

K

∑
=

∂ρ
∂T

PT
#
$%

&
'(

2

+
∂ρ
∂p

Pp
#
$%

&
'(

2+

,
-
-

.

/
0
0

2

∂ρ
∂T

PT
#
$%

&
'(

4

/νT +
∂ρ
∂p

Pp
#
$%

&
'(

4

/ν p

= 23

uρ = Bρ
2 + t23,95Pρ( )2"

#$
%
&'
= 0.0025lbm / ft 3    (95%)

ρ = 0.074 ± 0.0025lbm / ft 3    (95%)


